मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

8x+2y=104,x+y=25
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
8x+2y=104
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
8x=-2y+104
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
x=\frac{1}{8}\left(-2y+104\right)
दोनुय कुशींक 8 न भाग लावचो.
x=-\frac{1}{4}y+13
-2y+104क \frac{1}{8} फावटी गुणचें.
-\frac{1}{4}y+13+y=25
x+y=25 ह्या दुस-या समिकरणांत x खातीर -\frac{y}{4}+13 बदलपी घेवचो.
\frac{3}{4}y+13=25
y कडेन -\frac{y}{4} ची बेरीज करची.
\frac{3}{4}y=12
समिकरणाच्या दोनूय कुशींतल्यान 13 वजा करचें.
y=16
\frac{3}{4} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{1}{4}\times 16+13
x=-\frac{1}{4}y+13 त y खातीर 16 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-4+13
16क -\frac{1}{4} फावटी गुणचें.
x=9
-4 कडेन 13 ची बेरीज करची.
x=9,y=16
प्रणाली आतां सुटावी जाली.
8x+2y=104,x+y=25
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}8&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}104\\25\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}8&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
\left(\begin{matrix}8&2\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\1&1\end{matrix}\right))\left(\begin{matrix}104\\25\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-2}&-\frac{2}{8-2}\\-\frac{1}{8-2}&\frac{8}{8-2}\end{matrix}\right)\left(\begin{matrix}104\\25\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{3}\\-\frac{1}{6}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}104\\25\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 104-\frac{1}{3}\times 25\\-\frac{1}{6}\times 104+\frac{4}{3}\times 25\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
अंकगणीत करचें.
x=9,y=16
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
8x+2y=104,x+y=25
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
8x+2y=104,8x+8y=8\times 25
8x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 8 न गुणचें.
8x+2y=104,8x+8y=200
सोंपें करचें.
8x-8x+2y-8y=104-200
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 8x+2y=104 तल्यान 8x+8y=200 वजा करचो.
2y-8y=104-200
-8x कडेन 8x ची बेरीज करची. अटी 8x आनी -8x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-6y=104-200
-8y कडेन 2y ची बेरीज करची.
-6y=-96
-200 कडेन 104 ची बेरीज करची.
y=16
दोनुय कुशींक -6 न भाग लावचो.
x+16=25
x+y=25 त y खातीर 16 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=9
समिकरणाच्या दोनूय कुशींतल्यान 16 वजा करचें.
x=9,y=16
प्रणाली आतां सुटावी जाली.