मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

6x+7y=-18,3x-4y=-9
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
6x+7y=-18
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
6x=-7y-18
समिकरणाच्या दोनूय कुशींतल्यान 7y वजा करचें.
x=\frac{1}{6}\left(-7y-18\right)
दोनुय कुशींक 6 न भाग लावचो.
x=-\frac{7}{6}y-3
-7y-18क \frac{1}{6} फावटी गुणचें.
3\left(-\frac{7}{6}y-3\right)-4y=-9
3x-4y=-9 ह्या दुस-या समिकरणांत x खातीर -\frac{7y}{6}-3 बदलपी घेवचो.
-\frac{7}{2}y-9-4y=-9
-\frac{7y}{6}-3क 3 फावटी गुणचें.
-\frac{15}{2}y-9=-9
-4y कडेन -\frac{7y}{2} ची बेरीज करची.
-\frac{15}{2}y=0
समिकरणाच्या दोनूय कुशींतल्यान 9 ची बेरीज करची.
y=0
-\frac{15}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-3
x=-\frac{7}{6}y-3 त y खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-3,y=0
प्रणाली आतां सुटावी जाली.
6x+7y=-18,3x-4y=-9
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}6&7\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\-9\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}6&7\\3&-4\end{matrix}\right))\left(\begin{matrix}6&7\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\3&-4\end{matrix}\right))\left(\begin{matrix}-18\\-9\end{matrix}\right)
\left(\begin{matrix}6&7\\3&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\3&-4\end{matrix}\right))\left(\begin{matrix}-18\\-9\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\3&-4\end{matrix}\right))\left(\begin{matrix}-18\\-9\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{6\left(-4\right)-7\times 3}&-\frac{7}{6\left(-4\right)-7\times 3}\\-\frac{3}{6\left(-4\right)-7\times 3}&\frac{6}{6\left(-4\right)-7\times 3}\end{matrix}\right)\left(\begin{matrix}-18\\-9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{45}&\frac{7}{45}\\\frac{1}{15}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}-18\\-9\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{45}\left(-18\right)+\frac{7}{45}\left(-9\right)\\\frac{1}{15}\left(-18\right)-\frac{2}{15}\left(-9\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
अंकगणीत करचें.
x=-3,y=0
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
6x+7y=-18,3x-4y=-9
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 6x+3\times 7y=3\left(-18\right),6\times 3x+6\left(-4\right)y=6\left(-9\right)
6x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 6 न गुणचें.
18x+21y=-54,18x-24y=-54
सोंपें करचें.
18x-18x+21y+24y=-54+54
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 18x+21y=-54 तल्यान 18x-24y=-54 वजा करचो.
21y+24y=-54+54
-18x कडेन 18x ची बेरीज करची. अटी 18x आनी -18x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
45y=-54+54
24y कडेन 21y ची बेरीज करची.
45y=0
54 कडेन -54 ची बेरीज करची.
y=0
दोनुय कुशींक 45 न भाग लावचो.
3x=-9
3x-4y=-9 त y खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-3
दोनुय कुशींक 3 न भाग लावचो.
x=-3,y=0
प्रणाली आतां सुटावी जाली.