मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

5x+6y=-3,3x+7y=5
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x+6y=-3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=-6y-3
समिकरणाच्या दोनूय कुशींतल्यान 6y वजा करचें.
x=\frac{1}{5}\left(-6y-3\right)
दोनुय कुशींक 5 न भाग लावचो.
x=-\frac{6}{5}y-\frac{3}{5}
-6y-3क \frac{1}{5} फावटी गुणचें.
3\left(-\frac{6}{5}y-\frac{3}{5}\right)+7y=5
3x+7y=5 ह्या दुस-या समिकरणांत x खातीर \frac{-6y-3}{5} बदलपी घेवचो.
-\frac{18}{5}y-\frac{9}{5}+7y=5
\frac{-6y-3}{5}क 3 फावटी गुणचें.
\frac{17}{5}y-\frac{9}{5}=5
7y कडेन -\frac{18y}{5} ची बेरीज करची.
\frac{17}{5}y=\frac{34}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{9}{5} ची बेरीज करची.
y=2
\frac{17}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{6}{5}\times 2-\frac{3}{5}
x=-\frac{6}{5}y-\frac{3}{5} त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-12-3}{5}
2क -\frac{6}{5} फावटी गुणचें.
x=-3
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{12}{5} क -\frac{3}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-3,y=2
प्रणाली आतां सुटावी जाली.
5x+6y=-3,3x+7y=5
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&6\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}5&6\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
\left(\begin{matrix}5&6\\3&7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-6\times 3}&-\frac{6}{5\times 7-6\times 3}\\-\frac{3}{5\times 7-6\times 3}&\frac{5}{5\times 7-6\times 3}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{17}&-\frac{6}{17}\\-\frac{3}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{17}\left(-3\right)-\frac{6}{17}\times 5\\-\frac{3}{17}\left(-3\right)+\frac{5}{17}\times 5\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
अंकगणीत करचें.
x=-3,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x+6y=-3,3x+7y=5
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 5x+3\times 6y=3\left(-3\right),5\times 3x+5\times 7y=5\times 5
5x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
15x+18y=-9,15x+35y=25
सोंपें करचें.
15x-15x+18y-35y=-9-25
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 15x+18y=-9 तल्यान 15x+35y=25 वजा करचो.
18y-35y=-9-25
-15x कडेन 15x ची बेरीज करची. अटी 15x आनी -15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-17y=-9-25
-35y कडेन 18y ची बेरीज करची.
-17y=-34
-25 कडेन -9 ची बेरीज करची.
y=2
दोनुय कुशींक -17 न भाग लावचो.
3x+7\times 2=5
3x+7y=5 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x+14=5
2क 7 फावटी गुणचें.
3x=-9
समिकरणाच्या दोनूय कुशींतल्यान 14 वजा करचें.
x=-3
दोनुय कुशींक 3 न भाग लावचो.
x=-3,y=2
प्रणाली आतां सुटावी जाली.