मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

4x-2y=5,3x-4y=15
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x-2y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=2y+5
समिकरणाच्या दोनूय कुशींतल्यान 2y ची बेरीज करची.
x=\frac{1}{4}\left(2y+5\right)
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{1}{2}y+\frac{5}{4}
2y+5क \frac{1}{4} फावटी गुणचें.
3\left(\frac{1}{2}y+\frac{5}{4}\right)-4y=15
3x-4y=15 ह्या दुस-या समिकरणांत x खातीर \frac{y}{2}+\frac{5}{4} बदलपी घेवचो.
\frac{3}{2}y+\frac{15}{4}-4y=15
\frac{y}{2}+\frac{5}{4}क 3 फावटी गुणचें.
-\frac{5}{2}y+\frac{15}{4}=15
-4y कडेन \frac{3y}{2} ची बेरीज करची.
-\frac{5}{2}y=\frac{45}{4}
समिकरणाच्या दोनूय कुशींतल्यान \frac{15}{4} वजा करचें.
y=-\frac{9}{2}
-\frac{5}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{1}{2}\left(-\frac{9}{2}\right)+\frac{5}{4}
x=\frac{1}{2}y+\frac{5}{4} त y खातीर -\frac{9}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-9+5}{4}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून -\frac{9}{2} क \frac{1}{2} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{9}{4} क \frac{5}{4} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-1,y=-\frac{9}{2}
प्रणाली आतां सुटावी जाली.
4x-2y=5,3x-4y=15
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\15\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}&-\frac{-2}{4\left(-4\right)-\left(-2\times 3\right)}\\-\frac{3}{4\left(-4\right)-\left(-2\times 3\right)}&\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 5-\frac{1}{5}\times 15\\\frac{3}{10}\times 5-\frac{2}{5}\times 15\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{9}{2}\end{matrix}\right)
अंकगणीत करचें.
x=-1,y=-\frac{9}{2}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x-2y=5,3x-4y=15
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 4x+3\left(-2\right)y=3\times 5,4\times 3x+4\left(-4\right)y=4\times 15
4x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
12x-6y=15,12x-16y=60
सोंपें करचें.
12x-12x-6y+16y=15-60
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 12x-6y=15 तल्यान 12x-16y=60 वजा करचो.
-6y+16y=15-60
-12x कडेन 12x ची बेरीज करची. अटी 12x आनी -12x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
10y=15-60
16y कडेन -6y ची बेरीज करची.
10y=-45
-60 कडेन 15 ची बेरीज करची.
y=-\frac{9}{2}
दोनुय कुशींक 10 न भाग लावचो.
3x-4\left(-\frac{9}{2}\right)=15
3x-4y=15 त y खातीर -\frac{9}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x+18=15
-\frac{9}{2}क -4 फावटी गुणचें.
3x=-3
समिकरणाच्या दोनूय कुशींतल्यान 18 वजा करचें.
x=-1
दोनुय कुशींक 3 न भाग लावचो.
x=-1,y=-\frac{9}{2}
प्रणाली आतां सुटावी जाली.