x, y खातीर सोडोवचें
x = \frac{27}{23} = 1\frac{4}{23} \approx 1.173913043
y=\frac{6}{23}\approx 0.260869565
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
4x+5y=6,x+7y=3
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x+5y=6
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=-5y+6
समिकरणाच्या दोनूय कुशींतल्यान 5y वजा करचें.
x=\frac{1}{4}\left(-5y+6\right)
दोनुय कुशींक 4 न भाग लावचो.
x=-\frac{5}{4}y+\frac{3}{2}
-5y+6क \frac{1}{4} फावटी गुणचें.
-\frac{5}{4}y+\frac{3}{2}+7y=3
x+7y=3 ह्या दुस-या समिकरणांत x खातीर -\frac{5y}{4}+\frac{3}{2} बदलपी घेवचो.
\frac{23}{4}y+\frac{3}{2}=3
7y कडेन -\frac{5y}{4} ची बेरीज करची.
\frac{23}{4}y=\frac{3}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{3}{2} वजा करचें.
y=\frac{6}{23}
\frac{23}{4} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{5}{4}\times \frac{6}{23}+\frac{3}{2}
x=-\frac{5}{4}y+\frac{3}{2} त y खातीर \frac{6}{23} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{15}{46}+\frac{3}{2}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{6}{23} क -\frac{5}{4} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{27}{23}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{15}{46} क \frac{3}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{27}{23},y=\frac{6}{23}
प्रणाली आतां सुटावी जाली.
4x+5y=6,x+7y=3
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}4&5\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
\left(\begin{matrix}4&5\\1&7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\1&7\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4\times 7-5}&-\frac{5}{4\times 7-5}\\-\frac{1}{4\times 7-5}&\frac{4}{4\times 7-5}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}&-\frac{5}{23}\\-\frac{1}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{23}\times 6-\frac{5}{23}\times 3\\-\frac{1}{23}\times 6+\frac{4}{23}\times 3\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{23}\\\frac{6}{23}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{27}{23},y=\frac{6}{23}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x+5y=6,x+7y=3
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4x+5y=6,4x+4\times 7y=4\times 3
4x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
4x+5y=6,4x+28y=12
सोंपें करचें.
4x-4x+5y-28y=6-12
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 4x+5y=6 तल्यान 4x+28y=12 वजा करचो.
5y-28y=6-12
-4x कडेन 4x ची बेरीज करची. अटी 4x आनी -4x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-23y=6-12
-28y कडेन 5y ची बेरीज करची.
-23y=-6
-12 कडेन 6 ची बेरीज करची.
y=\frac{6}{23}
दोनुय कुशींक -23 न भाग लावचो.
x+7\times \frac{6}{23}=3
x+7y=3 त y खातीर \frac{6}{23} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x+\frac{42}{23}=3
\frac{6}{23}क 7 फावटी गुणचें.
x=\frac{27}{23}
समिकरणाच्या दोनूय कुशींतल्यान \frac{42}{23} वजा करचें.
x=\frac{27}{23},y=\frac{6}{23}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}