मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

4x+5y=2,3x+4y=1
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x+5y=2
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=-5y+2
समिकरणाच्या दोनूय कुशींतल्यान 5y वजा करचें.
x=\frac{1}{4}\left(-5y+2\right)
दोनुय कुशींक 4 न भाग लावचो.
x=-\frac{5}{4}y+\frac{1}{2}
-5y+2क \frac{1}{4} फावटी गुणचें.
3\left(-\frac{5}{4}y+\frac{1}{2}\right)+4y=1
3x+4y=1 ह्या दुस-या समिकरणांत x खातीर -\frac{5y}{4}+\frac{1}{2} बदलपी घेवचो.
-\frac{15}{4}y+\frac{3}{2}+4y=1
-\frac{5y}{4}+\frac{1}{2}क 3 फावटी गुणचें.
\frac{1}{4}y+\frac{3}{2}=1
4y कडेन -\frac{15y}{4} ची बेरीज करची.
\frac{1}{4}y=-\frac{1}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{3}{2} वजा करचें.
y=-2
दोनूय कुशीनीं 4 न गुणचें.
x=-\frac{5}{4}\left(-2\right)+\frac{1}{2}
x=-\frac{5}{4}y+\frac{1}{2} त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{5+1}{2}
-2क -\frac{5}{4} फावटी गुणचें.
x=3
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{5}{2} क \frac{1}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=3,y=-2
प्रणाली आतां सुटावी जाली.
4x+5y=2,3x+4y=1
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-5\times 3}&-\frac{5}{4\times 4-5\times 3}\\-\frac{3}{4\times 4-5\times 3}&\frac{4}{4\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-5\\-3&4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-5\\-3\times 2+4\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
अंकगणीत करचें.
x=3,y=-2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x+5y=2,3x+4y=1
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 4x+3\times 5y=3\times 2,4\times 3x+4\times 4y=4
4x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
12x+15y=6,12x+16y=4
सोंपें करचें.
12x-12x+15y-16y=6-4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 12x+15y=6 तल्यान 12x+16y=4 वजा करचो.
15y-16y=6-4
-12x कडेन 12x ची बेरीज करची. अटी 12x आनी -12x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-y=6-4
-16y कडेन 15y ची बेरीज करची.
-y=2
-4 कडेन 6 ची बेरीज करची.
y=-2
दोनुय कुशींक -1 न भाग लावचो.
3x+4\left(-2\right)=1
3x+4y=1 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x-8=1
-2क 4 फावटी गुणचें.
3x=9
समिकरणाच्या दोनूय कुशींतल्यान 8 ची बेरीज करची.
x=3
दोनुय कुशींक 3 न भाग लावचो.
x=3,y=-2
प्रणाली आतां सुटावी जाली.