मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

4x+3y=18,x+5y=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x+3y=18
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=-3y+18
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
x=\frac{1}{4}\left(-3y+18\right)
दोनुय कुशींक 4 न भाग लावचो.
x=-\frac{3}{4}y+\frac{9}{2}
-3y+18क \frac{1}{4} फावटी गुणचें.
-\frac{3}{4}y+\frac{9}{2}+5y=2
x+5y=2 ह्या दुस-या समिकरणांत x खातीर -\frac{3y}{4}+\frac{9}{2} बदलपी घेवचो.
\frac{17}{4}y+\frac{9}{2}=2
5y कडेन -\frac{3y}{4} ची बेरीज करची.
\frac{17}{4}y=-\frac{5}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{9}{2} वजा करचें.
y=-\frac{10}{17}
\frac{17}{4} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{3}{4}\left(-\frac{10}{17}\right)+\frac{9}{2}
x=-\frac{3}{4}y+\frac{9}{2} त y खातीर -\frac{10}{17} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{15}{34}+\frac{9}{2}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून -\frac{10}{17} क -\frac{3}{4} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{84}{17}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{15}{34} क \frac{9}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{84}{17},y=-\frac{10}{17}
प्रणाली आतां सुटावी जाली.
4x+3y=18,x+5y=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}4&3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
\left(\begin{matrix}4&3\\1&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3}&-\frac{3}{4\times 5-3}\\-\frac{1}{4\times 5-3}&\frac{4}{4\times 5-3}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&-\frac{3}{17}\\-\frac{1}{17}&\frac{4}{17}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\times 18-\frac{3}{17}\times 2\\-\frac{1}{17}\times 18+\frac{4}{17}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{84}{17}\\-\frac{10}{17}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{84}{17},y=-\frac{10}{17}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x+3y=18,x+5y=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4x+3y=18,4x+4\times 5y=4\times 2
4x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
4x+3y=18,4x+20y=8
सोंपें करचें.
4x-4x+3y-20y=18-8
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 4x+3y=18 तल्यान 4x+20y=8 वजा करचो.
3y-20y=18-8
-4x कडेन 4x ची बेरीज करची. अटी 4x आनी -4x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-17y=18-8
-20y कडेन 3y ची बेरीज करची.
-17y=10
-8 कडेन 18 ची बेरीज करची.
y=-\frac{10}{17}
दोनुय कुशींक -17 न भाग लावचो.
x+5\left(-\frac{10}{17}\right)=2
x+5y=2 त y खातीर -\frac{10}{17} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x-\frac{50}{17}=2
-\frac{10}{17}क 5 फावटी गुणचें.
x=\frac{84}{17}
समिकरणाच्या दोनूय कुशींतल्यान \frac{50}{17} ची बेरीज करची.
x=\frac{84}{17},y=-\frac{10}{17}
प्रणाली आतां सुटावी जाली.