x, y खातीर सोडोवचें
x=3
y=1
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
3x-7y=2,-5x+2y=-13
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x-7y=2
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=7y+2
समिकरणाच्या दोनूय कुशींतल्यान 7y ची बेरीज करची.
x=\frac{1}{3}\left(7y+2\right)
दोनुय कुशींक 3 न भाग लावचो.
x=\frac{7}{3}y+\frac{2}{3}
7y+2क \frac{1}{3} फावटी गुणचें.
-5\left(\frac{7}{3}y+\frac{2}{3}\right)+2y=-13
-5x+2y=-13 ह्या दुस-या समिकरणांत x खातीर \frac{7y+2}{3} बदलपी घेवचो.
-\frac{35}{3}y-\frac{10}{3}+2y=-13
\frac{7y+2}{3}क -5 फावटी गुणचें.
-\frac{29}{3}y-\frac{10}{3}=-13
2y कडेन -\frac{35y}{3} ची बेरीज करची.
-\frac{29}{3}y=-\frac{29}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{10}{3} ची बेरीज करची.
y=1
-\frac{29}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{7+2}{3}
x=\frac{7}{3}y+\frac{2}{3} त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=3
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{7}{3} क \frac{2}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=3,y=1
प्रणाली आतां सुटावी जाली.
3x-7y=2,-5x+2y=-13
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-13\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\left(-5\right)\right)}&-\frac{-7}{3\times 2-\left(-7\left(-5\right)\right)}\\-\frac{-5}{3\times 2-\left(-7\left(-5\right)\right)}&\frac{3}{3\times 2-\left(-7\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}&-\frac{7}{29}\\-\frac{5}{29}&-\frac{3}{29}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}\times 2-\frac{7}{29}\left(-13\right)\\-\frac{5}{29}\times 2-\frac{3}{29}\left(-13\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
अंकगणीत करचें.
x=3,y=1
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x-7y=2,-5x+2y=-13
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-5\times 3x-5\left(-7\right)y=-5\times 2,3\left(-5\right)x+3\times 2y=3\left(-13\right)
3x आनी -5x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -5 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
-15x+35y=-10,-15x+6y=-39
सोंपें करचें.
-15x+15x+35y-6y=-10+39
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -15x+35y=-10 तल्यान -15x+6y=-39 वजा करचो.
35y-6y=-10+39
15x कडेन -15x ची बेरीज करची. अटी -15x आनी 15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
29y=-10+39
-6y कडेन 35y ची बेरीज करची.
29y=29
39 कडेन -10 ची बेरीज करची.
y=1
दोनुय कुशींक 29 न भाग लावचो.
-5x+2=-13
-5x+2y=-13 त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-5x=-15
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
x=3
दोनुय कुशींक -5 न भाग लावचो.
x=3,y=1
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}