x, y खातीर सोडोवचें
x=0
y=-3
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
y+3x=-3
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी 3x जोडचे.
3x-4y=12,3x+y=-3
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x-4y=12
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=4y+12
समिकरणाच्या दोनूय कुशींतल्यान 4y ची बेरीज करची.
x=\frac{1}{3}\left(4y+12\right)
दोनुय कुशींक 3 न भाग लावचो.
x=\frac{4}{3}y+4
12+4yक \frac{1}{3} फावटी गुणचें.
3\left(\frac{4}{3}y+4\right)+y=-3
3x+y=-3 ह्या दुस-या समिकरणांत x खातीर 4+\frac{4y}{3} बदलपी घेवचो.
4y+12+y=-3
4+\frac{4y}{3}क 3 फावटी गुणचें.
5y+12=-3
y कडेन 4y ची बेरीज करची.
5y=-15
समिकरणाच्या दोनूय कुशींतल्यान 12 वजा करचें.
y=-3
दोनुय कुशींक 5 न भाग लावचो.
x=\frac{4}{3}\left(-3\right)+4
x=\frac{4}{3}y+4 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-4+4
-3क \frac{4}{3} फावटी गुणचें.
x=0
-4 कडेन 4 ची बेरीज करची.
x=0,y=-3
प्रणाली आतां सुटावी जाली.
y+3x=-3
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी 3x जोडचे.
3x-4y=12,3x+y=-3
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\-3\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}3&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\-3\end{matrix}\right)
\left(\begin{matrix}3&-4\\3&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\-3\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\-3\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\times 3\right)}&-\frac{-4}{3-\left(-4\times 3\right)}\\-\frac{3}{3-\left(-4\times 3\right)}&\frac{3}{3-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}12\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{4}{15}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\-3\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 12+\frac{4}{15}\left(-3\right)\\-\frac{1}{5}\times 12+\frac{1}{5}\left(-3\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
अंकगणीत करचें.
x=0,y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
y+3x=-3
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी 3x जोडचे.
3x-4y=12,3x+y=-3
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x-3x-4y-y=12+3
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x-4y=12 तल्यान 3x+y=-3 वजा करचो.
-4y-y=12+3
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-5y=12+3
-y कडेन -4y ची बेरीज करची.
-5y=15
3 कडेन 12 ची बेरीज करची.
y=-3
दोनुय कुशींक -5 न भाग लावचो.
3x-3=-3
3x+y=-3 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x=0
समिकरणाच्या दोनूय कुशींतल्यान 3 ची बेरीज करची.
x=0
दोनुय कुशींक 3 न भाग लावचो.
x=0,y=-3
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}