मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x+y=5,7x+y=6
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-y+5
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{3}\left(-y+5\right)
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{1}{3}y+\frac{5}{3}
-y+5क \frac{1}{3} फावटी गुणचें.
7\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=6
7x+y=6 ह्या दुस-या समिकरणांत x खातीर \frac{-y+5}{3} बदलपी घेवचो.
-\frac{7}{3}y+\frac{35}{3}+y=6
\frac{-y+5}{3}क 7 फावटी गुणचें.
-\frac{4}{3}y+\frac{35}{3}=6
y कडेन -\frac{7y}{3} ची बेरीज करची.
-\frac{4}{3}y=-\frac{17}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{35}{3} वजा करचें.
y=\frac{17}{4}
-\frac{4}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{1}{3}\times \frac{17}{4}+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3} त y खातीर \frac{17}{4} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{17}{12}+\frac{5}{3}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{17}{4} क -\frac{1}{3} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{1}{4}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{17}{12} क \frac{5}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{1}{4},y=\frac{17}{4}
प्रणाली आतां सुटावी जाली.
3x+y=5,7x+y=6
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
\left(\begin{matrix}3&1\\7&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-7}&-\frac{1}{3-7}\\-\frac{7}{3-7}&\frac{3}{3-7}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{7}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 5+\frac{1}{4}\times 6\\\frac{7}{4}\times 5-\frac{3}{4}\times 6\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\\frac{17}{4}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{1}{4},y=\frac{17}{4}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+y=5,7x+y=6
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x-7x+y-y=5-6
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+y=5 तल्यान 7x+y=6 वजा करचो.
3x-7x=5-6
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-4x=5-6
-7x कडेन 3x ची बेरीज करची.
-4x=-1
-6 कडेन 5 ची बेरीज करची.
x=\frac{1}{4}
दोनुय कुशींक -4 न भाग लावचो.
7\times \frac{1}{4}+y=6
7x+y=6 त x खातीर \frac{1}{4} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
\frac{7}{4}+y=6
\frac{1}{4}क 7 फावटी गुणचें.
y=\frac{17}{4}
समिकरणाच्या दोनूय कुशींतल्यान \frac{7}{4} वजा करचें.
x=\frac{1}{4},y=\frac{17}{4}
प्रणाली आतां सुटावी जाली.