x, y खातीर सोडोवचें
x=-5
y=20
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
3x+y=5,2x+y=10
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-y+5
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{3}\left(-y+5\right)
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{1}{3}y+\frac{5}{3}
-y+5क \frac{1}{3} फावटी गुणचें.
2\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=10
2x+y=10 ह्या दुस-या समिकरणांत x खातीर \frac{-y+5}{3} बदलपी घेवचो.
-\frac{2}{3}y+\frac{10}{3}+y=10
\frac{-y+5}{3}क 2 फावटी गुणचें.
\frac{1}{3}y+\frac{10}{3}=10
y कडेन -\frac{2y}{3} ची बेरीज करची.
\frac{1}{3}y=\frac{20}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{10}{3} वजा करचें.
y=20
दोनूय कुशीनीं 3 न गुणचें.
x=-\frac{1}{3}\times 20+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3} त y खातीर 20 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-20+5}{3}
20क -\frac{1}{3} फावटी गुणचें.
x=-5
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{20}{3} क \frac{5}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-5,y=20
प्रणाली आतां सुटावी जाली.
3x+y=5,2x+y=10
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-10\\-2\times 5+3\times 10\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\20\end{matrix}\right)
अंकगणीत करचें.
x=-5,y=20
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+y=5,2x+y=10
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x-2x+y-y=5-10
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+y=5 तल्यान 2x+y=10 वजा करचो.
3x-2x=5-10
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
x=5-10
-2x कडेन 3x ची बेरीज करची.
x=-5
-10 कडेन 5 ची बेरीज करची.
2\left(-5\right)+y=10
2x+y=10 त x खातीर -5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
-10+y=10
-5क 2 फावटी गुणचें.
y=20
समिकरणाच्या दोनूय कुशींतल्यान 10 ची बेरीज करची.
x=-5,y=20
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}