मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x+7y=13,5x-4y=6
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+7y=13
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-7y+13
समिकरणाच्या दोनूय कुशींतल्यान 7y वजा करचें.
x=\frac{1}{3}\left(-7y+13\right)
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{7}{3}y+\frac{13}{3}
-7y+13क \frac{1}{3} फावटी गुणचें.
5\left(-\frac{7}{3}y+\frac{13}{3}\right)-4y=6
5x-4y=6 ह्या दुस-या समिकरणांत x खातीर \frac{-7y+13}{3} बदलपी घेवचो.
-\frac{35}{3}y+\frac{65}{3}-4y=6
\frac{-7y+13}{3}क 5 फावटी गुणचें.
-\frac{47}{3}y+\frac{65}{3}=6
-4y कडेन -\frac{35y}{3} ची बेरीज करची.
-\frac{47}{3}y=-\frac{47}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{65}{3} वजा करचें.
y=1
-\frac{47}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{-7+13}{3}
x=-\frac{7}{3}y+\frac{13}{3} त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=2
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{7}{3} क \frac{13}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=2,y=1
प्रणाली आतां सुटावी जाली.
3x+7y=13,5x-4y=6
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\6\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-7\times 5}&-\frac{7}{3\left(-4\right)-7\times 5}\\-\frac{5}{3\left(-4\right)-7\times 5}&\frac{3}{3\left(-4\right)-7\times 5}\end{matrix}\right)\left(\begin{matrix}13\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{47}&\frac{7}{47}\\\frac{5}{47}&-\frac{3}{47}\end{matrix}\right)\left(\begin{matrix}13\\6\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{47}\times 13+\frac{7}{47}\times 6\\\frac{5}{47}\times 13-\frac{3}{47}\times 6\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
अंकगणीत करचें.
x=2,y=1
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+7y=13,5x-4y=6
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
5\times 3x+5\times 7y=5\times 13,3\times 5x+3\left(-4\right)y=3\times 6
3x आनी 5x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
15x+35y=65,15x-12y=18
सोंपें करचें.
15x-15x+35y+12y=65-18
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 15x+35y=65 तल्यान 15x-12y=18 वजा करचो.
35y+12y=65-18
-15x कडेन 15x ची बेरीज करची. अटी 15x आनी -15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
47y=65-18
12y कडेन 35y ची बेरीज करची.
47y=47
-18 कडेन 65 ची बेरीज करची.
y=1
दोनुय कुशींक 47 न भाग लावचो.
5x-4=6
5x-4y=6 त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
5x=10
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
x=2
दोनुय कुशींक 5 न भाग लावचो.
x=2,y=1
प्रणाली आतां सुटावी जाली.