मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

3x+4y=1,4x+y=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+4y=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-4y+1
समिकरणाच्या दोनूय कुशींतल्यान 4y वजा करचें.
x=\frac{1}{3}\left(-4y+1\right)
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{4}{3}y+\frac{1}{3}
-4y+1क \frac{1}{3} फावटी गुणचें.
4\left(-\frac{4}{3}y+\frac{1}{3}\right)+y=2
4x+y=2 ह्या दुस-या समिकरणांत x खातीर \frac{-4y+1}{3} बदलपी घेवचो.
-\frac{16}{3}y+\frac{4}{3}+y=2
\frac{-4y+1}{3}क 4 फावटी गुणचें.
-\frac{13}{3}y+\frac{4}{3}=2
y कडेन -\frac{16y}{3} ची बेरीज करची.
-\frac{13}{3}y=\frac{2}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{4}{3} वजा करचें.
y=-\frac{2}{13}
-\frac{13}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{4}{3}\left(-\frac{2}{13}\right)+\frac{1}{3}
x=-\frac{4}{3}y+\frac{1}{3} त y खातीर -\frac{2}{13} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{8}{39}+\frac{1}{3}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून -\frac{2}{13} क -\frac{4}{3} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{7}{13}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{8}{39} क \frac{1}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{7}{13},y=-\frac{2}{13}
प्रणाली आतां सुटावी जाली.
3x+4y=1,4x+y=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}3&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
\left(\begin{matrix}3&4\\4&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\times 4}&-\frac{4}{3-4\times 4}\\-\frac{4}{3-4\times 4}&\frac{3}{3-4\times 4}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{4}{13}\\\frac{4}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}+\frac{4}{13}\times 2\\\frac{4}{13}-\frac{3}{13}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\\-\frac{2}{13}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{7}{13},y=-\frac{2}{13}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+4y=1,4x+y=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4\times 3x+4\times 4y=4,3\times 4x+3y=3\times 2
3x आनी 4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
12x+16y=4,12x+3y=6
सोंपें करचें.
12x-12x+16y-3y=4-6
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 12x+16y=4 तल्यान 12x+3y=6 वजा करचो.
16y-3y=4-6
-12x कडेन 12x ची बेरीज करची. अटी 12x आनी -12x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
13y=4-6
-3y कडेन 16y ची बेरीज करची.
13y=-2
-6 कडेन 4 ची बेरीज करची.
y=-\frac{2}{13}
दोनुय कुशींक 13 न भाग लावचो.
4x-\frac{2}{13}=2
4x+y=2 त y खातीर -\frac{2}{13} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
4x=\frac{28}{13}
समिकरणाच्या दोनूय कुशींतल्यान \frac{2}{13} ची बेरीज करची.
x=\frac{7}{13}
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{7}{13},y=-\frac{2}{13}
प्रणाली आतां सुटावी जाली.