x, y खातीर सोडोवचें
x=9
y=-12
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
3x+2y=3,x-y=21
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+2y=3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-2y+3
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
x=\frac{1}{3}\left(-2y+3\right)
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{2}{3}y+1
-2y+3क \frac{1}{3} फावटी गुणचें.
-\frac{2}{3}y+1-y=21
x-y=21 ह्या दुस-या समिकरणांत x खातीर -\frac{2y}{3}+1 बदलपी घेवचो.
-\frac{5}{3}y+1=21
-y कडेन -\frac{2y}{3} ची बेरीज करची.
-\frac{5}{3}y=20
समिकरणाच्या दोनूय कुशींतल्यान 1 वजा करचें.
y=-12
-\frac{5}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{2}{3}\left(-12\right)+1
x=-\frac{2}{3}y+1 त y खातीर -12 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=8+1
-12क -\frac{2}{3} फावटी गुणचें.
x=9
8 कडेन 1 ची बेरीज करची.
x=9,y=-12
प्रणाली आतां सुटावी जाली.
3x+2y=3,x-y=21
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\21\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{2}{3\left(-1\right)-2}\\-\frac{1}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}3\\21\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}3\\21\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 3+\frac{2}{5}\times 21\\\frac{1}{5}\times 3-\frac{3}{5}\times 21\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-12\end{matrix}\right)
अंकगणीत करचें.
x=9,y=-12
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+2y=3,x-y=21
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+2y=3,3x+3\left(-1\right)y=3\times 21
3x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
3x+2y=3,3x-3y=63
सोंपें करचें.
3x-3x+2y+3y=3-63
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+2y=3 तल्यान 3x-3y=63 वजा करचो.
2y+3y=3-63
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
5y=3-63
3y कडेन 2y ची बेरीज करची.
5y=-60
-63 कडेन 3 ची बेरीज करची.
y=-12
दोनुय कुशींक 5 न भाग लावचो.
x-\left(-12\right)=21
x-y=21 त y खातीर -12 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=9
समिकरणाच्या दोनूय कुशींतल्यान 12 वजा करचें.
x=9,y=-12
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}