मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x-y=6,3x-2y=4
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x-y=6
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=y+6
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
x=\frac{1}{2}\left(y+6\right)
दोनुय कुशींक 2 न भाग लावचो.
x=\frac{1}{2}y+3
y+6क \frac{1}{2} फावटी गुणचें.
3\left(\frac{1}{2}y+3\right)-2y=4
3x-2y=4 ह्या दुस-या समिकरणांत x खातीर \frac{y}{2}+3 बदलपी घेवचो.
\frac{3}{2}y+9-2y=4
\frac{y}{2}+3क 3 फावटी गुणचें.
-\frac{1}{2}y+9=4
-2y कडेन \frac{3y}{2} ची बेरीज करची.
-\frac{1}{2}y=-5
समिकरणाच्या दोनूय कुशींतल्यान 9 वजा करचें.
y=10
दोनूय कुशीनीं -2 न गुणचें.
x=\frac{1}{2}\times 10+3
x=\frac{1}{2}y+3 त y खातीर 10 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=5+3
10क \frac{1}{2} फावटी गुणचें.
x=8
5 कडेन 3 ची बेरीज करची.
x=8,y=10
प्रणाली आतां सुटावी जाली.
2x-y=6,3x-2y=4
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\right)}&-\frac{-1}{2\left(-2\right)-\left(-3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\right)}&\frac{2}{2\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 6-4\\3\times 6-2\times 4\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\10\end{matrix}\right)
अंकगणीत करचें.
x=8,y=10
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x-y=6,3x-2y=4
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 2x+3\left(-1\right)y=3\times 6,2\times 3x+2\left(-2\right)y=2\times 4
2x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
6x-3y=18,6x-4y=8
सोंपें करचें.
6x-6x-3y+4y=18-8
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 6x-3y=18 तल्यान 6x-4y=8 वजा करचो.
-3y+4y=18-8
-6x कडेन 6x ची बेरीज करची. अटी 6x आनी -6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
y=18-8
4y कडेन -3y ची बेरीज करची.
y=10
-8 कडेन 18 ची बेरीज करची.
3x-2\times 10=4
3x-2y=4 त y खातीर 10 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x-20=4
10क -2 फावटी गुणचें.
3x=24
समिकरणाच्या दोनूय कुशींतल्यान 20 ची बेरीज करची.
x=8
दोनुय कुशींक 3 न भाग लावचो.
x=8,y=10
प्रणाली आतां सुटावी जाली.