x, y खातीर सोडोवचें
x = \frac{305}{11} = 27\frac{8}{11} \approx 27.727272727
y = \frac{100}{11} = 9\frac{1}{11} \approx 9.090909091
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
2x-5y=10,4x+y=120
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x-5y=10
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=5y+10
समिकरणाच्या दोनूय कुशींतल्यान 5y ची बेरीज करची.
x=\frac{1}{2}\left(5y+10\right)
दोनुय कुशींक 2 न भाग लावचो.
x=\frac{5}{2}y+5
10+5yक \frac{1}{2} फावटी गुणचें.
4\left(\frac{5}{2}y+5\right)+y=120
4x+y=120 ह्या दुस-या समिकरणांत x खातीर 5+\frac{5y}{2} बदलपी घेवचो.
10y+20+y=120
5+\frac{5y}{2}क 4 फावटी गुणचें.
11y+20=120
y कडेन 10y ची बेरीज करची.
11y=100
समिकरणाच्या दोनूय कुशींतल्यान 20 वजा करचें.
y=\frac{100}{11}
दोनुय कुशींक 11 न भाग लावचो.
x=\frac{5}{2}\times \frac{100}{11}+5
x=\frac{5}{2}y+5 त y खातीर \frac{100}{11} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{250}{11}+5
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{100}{11} क \frac{5}{2} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{305}{11}
\frac{250}{11} कडेन 5 ची बेरीज करची.
x=\frac{305}{11},y=\frac{100}{11}
प्रणाली आतां सुटावी जाली.
2x-5y=10,4x+y=120
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\120\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\120\end{matrix}\right)
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\120\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\120\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}10\\120\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}10\\120\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 10+\frac{5}{22}\times 120\\-\frac{2}{11}\times 10+\frac{1}{11}\times 120\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{305}{11}\\\frac{100}{11}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{305}{11},y=\frac{100}{11}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x-5y=10,4x+y=120
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4\times 2x+4\left(-5\right)y=4\times 10,2\times 4x+2y=2\times 120
2x आनी 4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
8x-20y=40,8x+2y=240
सोंपें करचें.
8x-8x-20y-2y=40-240
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 8x-20y=40 तल्यान 8x+2y=240 वजा करचो.
-20y-2y=40-240
-8x कडेन 8x ची बेरीज करची. अटी 8x आनी -8x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-22y=40-240
-2y कडेन -20y ची बेरीज करची.
-22y=-200
-240 कडेन 40 ची बेरीज करची.
y=\frac{100}{11}
दोनुय कुशींक -22 न भाग लावचो.
4x+\frac{100}{11}=120
4x+y=120 त y खातीर \frac{100}{11} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
4x=\frac{1220}{11}
समिकरणाच्या दोनूय कुशींतल्यान \frac{100}{11} वजा करचें.
x=\frac{305}{11}
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{305}{11},y=\frac{100}{11}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}