मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x+y=6,6x-y=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+y=6
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-y+6
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{2}\left(-y+6\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{1}{2}y+3
-y+6क \frac{1}{2} फावटी गुणचें.
6\left(-\frac{1}{2}y+3\right)-y=2
6x-y=2 ह्या दुस-या समिकरणांत x खातीर -\frac{y}{2}+3 बदलपी घेवचो.
-3y+18-y=2
-\frac{y}{2}+3क 6 फावटी गुणचें.
-4y+18=2
-y कडेन -3y ची बेरीज करची.
-4y=-16
समिकरणाच्या दोनूय कुशींतल्यान 18 वजा करचें.
y=4
दोनुय कुशींक -4 न भाग लावचो.
x=-\frac{1}{2}\times 4+3
x=-\frac{1}{2}y+3 त y खातीर 4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-2+3
4क -\frac{1}{2} फावटी गुणचें.
x=1
-2 कडेन 3 ची बेरीज करची.
x=1,y=4
प्रणाली आतां सुटावी जाली.
2x+y=6,6x-y=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-6}&-\frac{1}{2\left(-1\right)-6}\\-\frac{6}{2\left(-1\right)-6}&\frac{2}{2\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 2\\\frac{3}{4}\times 6-\frac{1}{4}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
अंकगणीत करचें.
x=1,y=4
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+y=6,6x-y=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
6\times 2x+6y=6\times 6,2\times 6x+2\left(-1\right)y=2\times 2
2x आनी 6x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 6 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
12x+6y=36,12x-2y=4
सोंपें करचें.
12x-12x+6y+2y=36-4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 12x+6y=36 तल्यान 12x-2y=4 वजा करचो.
6y+2y=36-4
-12x कडेन 12x ची बेरीज करची. अटी 12x आनी -12x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
8y=36-4
2y कडेन 6y ची बेरीज करची.
8y=32
-4 कडेन 36 ची बेरीज करची.
y=4
दोनुय कुशींक 8 न भाग लावचो.
6x-4=2
6x-y=2 त y खातीर 4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
6x=6
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
x=1
दोनुय कुशींक 6 न भाग लावचो.
x=1,y=4
प्रणाली आतां सुटावी जाली.