मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x+4y=-4,2x+y=8
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+4y=-4
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-4y-4
समिकरणाच्या दोनूय कुशींतल्यान 4y वजा करचें.
x=\frac{1}{2}\left(-4y-4\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-2y-2
-4y-4क \frac{1}{2} फावटी गुणचें.
2\left(-2y-2\right)+y=8
2x+y=8 ह्या दुस-या समिकरणांत x खातीर -2y-2 बदलपी घेवचो.
-4y-4+y=8
-2y-2क 2 फावटी गुणचें.
-3y-4=8
y कडेन -4y ची बेरीज करची.
-3y=12
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
y=-4
दोनुय कुशींक -3 न भाग लावचो.
x=-2\left(-4\right)-2
x=-2y-2 त y खातीर -4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=8-2
-4क -2 फावटी गुणचें.
x=6
8 कडेन -2 ची बेरीज करची.
x=6,y=-4
प्रणाली आतां सुटावी जाली.
2x+4y=-4,2x+y=8
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\8\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}2&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
\left(\begin{matrix}2&4\\2&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 2}&-\frac{4}{2-4\times 2}\\-\frac{2}{2-4\times 2}&\frac{2}{2-4\times 2}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-4\right)+\frac{2}{3}\times 8\\\frac{1}{3}\left(-4\right)-\frac{1}{3}\times 8\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
अंकगणीत करचें.
x=6,y=-4
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+4y=-4,2x+y=8
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2x-2x+4y-y=-4-8
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2x+4y=-4 तल्यान 2x+y=8 वजा करचो.
4y-y=-4-8
-2x कडेन 2x ची बेरीज करची. अटी 2x आनी -2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
3y=-4-8
-y कडेन 4y ची बेरीज करची.
3y=-12
-8 कडेन -4 ची बेरीज करची.
y=-4
दोनुय कुशींक 3 न भाग लावचो.
2x-4=8
2x+y=8 त y खातीर -4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x=12
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
x=6
दोनुय कुशींक 2 न भाग लावचो.
x=6,y=-4
प्रणाली आतां सुटावी जाली.