x, y खातीर सोडोवचें
x = \frac{23}{16} = 1\frac{7}{16} = 1.4375
y = \frac{11}{8} = 1\frac{3}{8} = 1.375
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
2x+3y=7,6x+y=10
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+3y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-3y+7
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
x=\frac{1}{2}\left(-3y+7\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{3}{2}y+\frac{7}{2}
-3y+7क \frac{1}{2} फावटी गुणचें.
6\left(-\frac{3}{2}y+\frac{7}{2}\right)+y=10
6x+y=10 ह्या दुस-या समिकरणांत x खातीर \frac{-3y+7}{2} बदलपी घेवचो.
-9y+21+y=10
\frac{-3y+7}{2}क 6 फावटी गुणचें.
-8y+21=10
y कडेन -9y ची बेरीज करची.
-8y=-11
समिकरणाच्या दोनूय कुशींतल्यान 21 वजा करचें.
y=\frac{11}{8}
दोनुय कुशींक -8 न भाग लावचो.
x=-\frac{3}{2}\times \frac{11}{8}+\frac{7}{2}
x=-\frac{3}{2}y+\frac{7}{2} त y खातीर \frac{11}{8} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{33}{16}+\frac{7}{2}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{11}{8} क -\frac{3}{2} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{23}{16}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{33}{16} क \frac{7}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{23}{16},y=\frac{11}{8}
प्रणाली आतां सुटावी जाली.
2x+3y=7,6x+y=10
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\10\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}7\\10\end{matrix}\right)
\left(\begin{matrix}2&3\\6&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}7\\10\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}7\\10\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 6}&-\frac{3}{2-3\times 6}\\-\frac{6}{2-3\times 6}&\frac{2}{2-3\times 6}\end{matrix}\right)\left(\begin{matrix}7\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}&\frac{3}{16}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}7\\10\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}\times 7+\frac{3}{16}\times 10\\\frac{3}{8}\times 7-\frac{1}{8}\times 10\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{16}\\\frac{11}{8}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{23}{16},y=\frac{11}{8}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+3y=7,6x+y=10
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
6\times 2x+6\times 3y=6\times 7,2\times 6x+2y=2\times 10
2x आनी 6x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 6 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
12x+18y=42,12x+2y=20
सोंपें करचें.
12x-12x+18y-2y=42-20
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 12x+18y=42 तल्यान 12x+2y=20 वजा करचो.
18y-2y=42-20
-12x कडेन 12x ची बेरीज करची. अटी 12x आनी -12x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
16y=42-20
-2y कडेन 18y ची बेरीज करची.
16y=22
-20 कडेन 42 ची बेरीज करची.
y=\frac{11}{8}
दोनुय कुशींक 16 न भाग लावचो.
6x+\frac{11}{8}=10
6x+y=10 त y खातीर \frac{11}{8} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
6x=\frac{69}{8}
समिकरणाच्या दोनूय कुशींतल्यान \frac{11}{8} वजा करचें.
x=\frac{23}{16}
दोनुय कुशींक 6 न भाग लावचो.
x=\frac{23}{16},y=\frac{11}{8}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}