मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

7x-4y=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 4y वजा करचें.
2x+3y=5,7x-4y=-2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+3y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-3y+5
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
x=\frac{1}{2}\left(-3y+5\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{3}{2}y+\frac{5}{2}
-3y+5क \frac{1}{2} फावटी गुणचें.
7\left(-\frac{3}{2}y+\frac{5}{2}\right)-4y=-2
7x-4y=-2 ह्या दुस-या समिकरणांत x खातीर \frac{-3y+5}{2} बदलपी घेवचो.
-\frac{21}{2}y+\frac{35}{2}-4y=-2
\frac{-3y+5}{2}क 7 फावटी गुणचें.
-\frac{29}{2}y+\frac{35}{2}=-2
-4y कडेन -\frac{21y}{2} ची बेरीज करची.
-\frac{29}{2}y=-\frac{39}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{35}{2} वजा करचें.
y=\frac{39}{29}
-\frac{29}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{3}{2}\times \frac{39}{29}+\frac{5}{2}
x=-\frac{3}{2}y+\frac{5}{2} त y खातीर \frac{39}{29} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{117}{58}+\frac{5}{2}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{39}{29} क -\frac{3}{2} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{14}{29}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{117}{58} क \frac{5}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{14}{29},y=\frac{39}{29}
प्रणाली आतां सुटावी जाली.
7x-4y=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 4y वजा करचें.
2x+3y=5,7x-4y=-2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&3\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}2&3\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
\left(\begin{matrix}2&3\\7&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-3\times 7}&-\frac{3}{2\left(-4\right)-3\times 7}\\-\frac{7}{2\left(-4\right)-3\times 7}&\frac{2}{2\left(-4\right)-3\times 7}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}&\frac{3}{29}\\\frac{7}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}\times 5+\frac{3}{29}\left(-2\right)\\\frac{7}{29}\times 5-\frac{2}{29}\left(-2\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{14}{29}\\\frac{39}{29}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{14}{29},y=\frac{39}{29}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
7x-4y=-2
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 4y वजा करचें.
2x+3y=5,7x-4y=-2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
7\times 2x+7\times 3y=7\times 5,2\times 7x+2\left(-4\right)y=2\left(-2\right)
2x आनी 7x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 7 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
14x+21y=35,14x-8y=-4
सोंपें करचें.
14x-14x+21y+8y=35+4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 14x+21y=35 तल्यान 14x-8y=-4 वजा करचो.
21y+8y=35+4
-14x कडेन 14x ची बेरीज करची. अटी 14x आनी -14x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
29y=35+4
8y कडेन 21y ची बेरीज करची.
29y=39
4 कडेन 35 ची बेरीज करची.
y=\frac{39}{29}
दोनुय कुशींक 29 न भाग लावचो.
7x-4\times \frac{39}{29}=-2
7x-4y=-2 त y खातीर \frac{39}{29} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
7x-\frac{156}{29}=-2
\frac{39}{29}क -4 फावटी गुणचें.
7x=\frac{98}{29}
समिकरणाच्या दोनूय कुशींतल्यान \frac{156}{29} ची बेरीज करची.
x=\frac{14}{29}
दोनुय कुशींक 7 न भाग लावचो.
x=\frac{14}{29},y=\frac{39}{29}
प्रणाली आतां सुटावी जाली.