मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x+3y=15,5x+4y=13
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+3y=15
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-3y+15
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
x=\frac{1}{2}\left(-3y+15\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{3}{2}y+\frac{15}{2}
-3y+15क \frac{1}{2} फावटी गुणचें.
5\left(-\frac{3}{2}y+\frac{15}{2}\right)+4y=13
5x+4y=13 ह्या दुस-या समिकरणांत x खातीर \frac{-3y+15}{2} बदलपी घेवचो.
-\frac{15}{2}y+\frac{75}{2}+4y=13
\frac{-3y+15}{2}क 5 फावटी गुणचें.
-\frac{7}{2}y+\frac{75}{2}=13
4y कडेन -\frac{15y}{2} ची बेरीज करची.
-\frac{7}{2}y=-\frac{49}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{75}{2} वजा करचें.
y=7
-\frac{7}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{3}{2}\times 7+\frac{15}{2}
x=-\frac{3}{2}y+\frac{15}{2} त y खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-21+15}{2}
7क -\frac{3}{2} फावटी गुणचें.
x=-3
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{21}{2} क \frac{15}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-3,y=7
प्रणाली आतां सुटावी जाली.
2x+3y=15,5x+4y=13
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\13\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}15\\13\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}15\\13\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 15+\frac{3}{7}\times 13\\\frac{5}{7}\times 15-\frac{2}{7}\times 13\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
अंकगणीत करचें.
x=-3,y=7
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+3y=15,5x+4y=13
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
5\times 2x+5\times 3y=5\times 15,2\times 5x+2\times 4y=2\times 13
2x आनी 5x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
10x+15y=75,10x+8y=26
सोंपें करचें.
10x-10x+15y-8y=75-26
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 10x+15y=75 तल्यान 10x+8y=26 वजा करचो.
15y-8y=75-26
-10x कडेन 10x ची बेरीज करची. अटी 10x आनी -10x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
7y=75-26
-8y कडेन 15y ची बेरीज करची.
7y=49
-26 कडेन 75 ची बेरीज करची.
y=7
दोनुय कुशींक 7 न भाग लावचो.
5x+4\times 7=13
5x+4y=13 त y खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
5x+28=13
7क 4 फावटी गुणचें.
5x=-15
समिकरणाच्या दोनूय कुशींतल्यान 28 वजा करचें.
x=-3
दोनुय कुशींक 5 न भाग लावचो.
x=-3,y=7
प्रणाली आतां सुटावी जाली.