x, y खातीर सोडोवचें
x=6
y=-4
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-x-5y=14,-2x-7y=16
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-x-5y=14
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-x=5y+14
समिकरणाच्या दोनूय कुशींतल्यान 5y ची बेरीज करची.
x=-\left(5y+14\right)
दोनुय कुशींक -1 न भाग लावचो.
x=-5y-14
5y+14क -1 फावटी गुणचें.
-2\left(-5y-14\right)-7y=16
-2x-7y=16 ह्या दुस-या समिकरणांत x खातीर -5y-14 बदलपी घेवचो.
10y+28-7y=16
-5y-14क -2 फावटी गुणचें.
3y+28=16
-7y कडेन 10y ची बेरीज करची.
3y=-12
समिकरणाच्या दोनूय कुशींतल्यान 28 वजा करचें.
y=-4
दोनुय कुशींक 3 न भाग लावचो.
x=-5\left(-4\right)-14
x=-5y-14 त y खातीर -4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=20-14
-4क -5 फावटी गुणचें.
x=6
20 कडेन -14 ची बेरीज करची.
x=6,y=-4
प्रणाली आतां सुटावी जाली.
-x-5y=14,-2x-7y=16
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{-5}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\\-\frac{-2}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{1}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{5}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 14-\frac{5}{3}\times 16\\-\frac{2}{3}\times 14+\frac{1}{3}\times 16\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
अंकगणीत करचें.
x=6,y=-4
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
-x-5y=14,-2x-7y=16
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-2\left(-1\right)x-2\left(-5\right)y=-2\times 14,-\left(-2\right)x-\left(-7y\right)=-16
-x आनी -2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -1 न गुणचें.
2x+10y=-28,2x+7y=-16
सोंपें करचें.
2x-2x+10y-7y=-28+16
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2x+10y=-28 तल्यान 2x+7y=-16 वजा करचो.
10y-7y=-28+16
-2x कडेन 2x ची बेरीज करची. अटी 2x आनी -2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
3y=-28+16
-7y कडेन 10y ची बेरीज करची.
3y=-12
16 कडेन -28 ची बेरीज करची.
y=-4
दोनुय कुशींक 3 न भाग लावचो.
-2x-7\left(-4\right)=16
-2x-7y=16 त y खातीर -4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-2x+28=16
-4क -7 फावटी गुणचें.
-2x=-12
समिकरणाच्या दोनूय कुशींतल्यान 28 वजा करचें.
x=6
दोनुय कुशींक -2 न भाग लावचो.
x=6,y=-4
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}