x, y खातीर सोडोवचें
x=8
y=-9
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-8x-6y=-10,x-y=17
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-8x-6y=-10
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-8x=6y-10
समिकरणाच्या दोनूय कुशींतल्यान 6y ची बेरीज करची.
x=-\frac{1}{8}\left(6y-10\right)
दोनुय कुशींक -8 न भाग लावचो.
x=-\frac{3}{4}y+\frac{5}{4}
6y-10क -\frac{1}{8} फावटी गुणचें.
-\frac{3}{4}y+\frac{5}{4}-y=17
x-y=17 ह्या दुस-या समिकरणांत x खातीर \frac{-3y+5}{4} बदलपी घेवचो.
-\frac{7}{4}y+\frac{5}{4}=17
-y कडेन -\frac{3y}{4} ची बेरीज करची.
-\frac{7}{4}y=\frac{63}{4}
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{4} वजा करचें.
y=-9
-\frac{7}{4} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{3}{4}\left(-9\right)+\frac{5}{4}
x=-\frac{3}{4}y+\frac{5}{4} त y खातीर -9 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{27+5}{4}
-9क -\frac{3}{4} फावटी गुणचें.
x=8
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{27}{4} क \frac{5}{4} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=8,y=-9
प्रणाली आतां सुटावी जाली.
-8x-6y=-10,x-y=17
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\17\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{-6}{-8\left(-1\right)-\left(-6\right)}\\-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{8}{-8\left(-1\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{3}{7}\\-\frac{1}{14}&-\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\left(-10\right)+\frac{3}{7}\times 17\\-\frac{1}{14}\left(-10\right)-\frac{4}{7}\times 17\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-9\end{matrix}\right)
अंकगणीत करचें.
x=8,y=-9
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
-8x-6y=-10,x-y=17
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-8x-6y=-10,-8x-8\left(-1\right)y=-8\times 17
-8x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -8 न गुणचें.
-8x-6y=-10,-8x+8y=-136
सोंपें करचें.
-8x+8x-6y-8y=-10+136
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -8x-6y=-10 तल्यान -8x+8y=-136 वजा करचो.
-6y-8y=-10+136
8x कडेन -8x ची बेरीज करची. अटी -8x आनी 8x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-14y=-10+136
-8y कडेन -6y ची बेरीज करची.
-14y=126
136 कडेन -10 ची बेरीज करची.
y=-9
दोनुय कुशींक -14 न भाग लावचो.
x-\left(-9\right)=17
x-y=17 त y खातीर -9 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=8
समिकरणाच्या दोनूय कुशींतल्यान 9 वजा करचें.
x=8,y=-9
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}