मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-2x=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
-4x+5y=24,-2x+y=0
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-4x+5y=24
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-4x=-5y+24
समिकरणाच्या दोनूय कुशींतल्यान 5y वजा करचें.
x=-\frac{1}{4}\left(-5y+24\right)
दोनुय कुशींक -4 न भाग लावचो.
x=\frac{5}{4}y-6
-5y+24क -\frac{1}{4} फावटी गुणचें.
-2\left(\frac{5}{4}y-6\right)+y=0
-2x+y=0 ह्या दुस-या समिकरणांत x खातीर \frac{5y}{4}-6 बदलपी घेवचो.
-\frac{5}{2}y+12+y=0
\frac{5y}{4}-6क -2 फावटी गुणचें.
-\frac{3}{2}y+12=0
y कडेन -\frac{5y}{2} ची बेरीज करची.
-\frac{3}{2}y=-12
समिकरणाच्या दोनूय कुशींतल्यान 12 वजा करचें.
y=8
-\frac{3}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{5}{4}\times 8-6
x=\frac{5}{4}y-6 त y खातीर 8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=10-6
8क \frac{5}{4} फावटी गुणचें.
x=4
10 कडेन -6 ची बेरीज करची.
x=4,y=8
प्रणाली आतां सुटावी जाली.
y-2x=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
-4x+5y=24,-2x+y=0
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\0\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}24\\0\end{matrix}\right)
\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}24\\0\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&5\\-2&1\end{matrix}\right))\left(\begin{matrix}24\\0\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-4-5\left(-2\right)}&-\frac{5}{-4-5\left(-2\right)}\\-\frac{-2}{-4-5\left(-2\right)}&-\frac{4}{-4-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}24\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{5}{6}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}24\\0\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 24\\\frac{1}{3}\times 24\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
अंकगणीत करचें.
x=4,y=8
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
y-2x=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 2x वजा करचें.
-4x+5y=24,-2x+y=0
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-2\left(-4\right)x-2\times 5y=-2\times 24,-4\left(-2\right)x-4y=0
-4x आनी -2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -4 न गुणचें.
8x-10y=-48,8x-4y=0
सोंपें करचें.
8x-8x-10y+4y=-48
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 8x-10y=-48 तल्यान 8x-4y=0 वजा करचो.
-10y+4y=-48
-8x कडेन 8x ची बेरीज करची. अटी 8x आनी -8x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-6y=-48
4y कडेन -10y ची बेरीज करची.
y=8
दोनुय कुशींक -6 न भाग लावचो.
-2x+8=0
-2x+y=0 त y खातीर 8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-2x=-8
समिकरणाच्या दोनूय कुशींतल्यान 8 वजा करचें.
x=4
दोनुय कुशींक -2 न भाग लावचो.
x=4,y=8
प्रणाली आतां सुटावी जाली.