मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+y=2
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी y जोडचे.
-3x+2y=4,x+y=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-3x+2y=4
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-3x=-2y+4
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
x=-\frac{1}{3}\left(-2y+4\right)
दोनुय कुशींक -3 न भाग लावचो.
x=\frac{2}{3}y-\frac{4}{3}
-2y+4क -\frac{1}{3} फावटी गुणचें.
\frac{2}{3}y-\frac{4}{3}+y=2
x+y=2 ह्या दुस-या समिकरणांत x खातीर \frac{-4+2y}{3} बदलपी घेवचो.
\frac{5}{3}y-\frac{4}{3}=2
y कडेन \frac{2y}{3} ची बेरीज करची.
\frac{5}{3}y=\frac{10}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{4}{3} ची बेरीज करची.
y=2
\frac{5}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{2}{3}\times 2-\frac{4}{3}
x=\frac{2}{3}y-\frac{4}{3} त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{4-4}{3}
2क \frac{2}{3} फावटी गुणचें.
x=0
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{4}{3} क -\frac{4}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=0,y=2
प्रणाली आतां सुटावी जाली.
x+y=2
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी y जोडचे.
-3x+2y=4,x+y=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&-\frac{3}{-3-2}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 4+\frac{2}{5}\times 2\\\frac{1}{5}\times 4+\frac{3}{5}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
अंकगणीत करचें.
x=0,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+y=2
दुसरें समिकरण विचारांत घेवचें. दोनूय वटांनी y जोडचे.
-3x+2y=4,x+y=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-3x+2y=4,-3x-3y=-3\times 2
-3x आनी x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -3 न गुणचें.
-3x+2y=4,-3x-3y=-6
सोंपें करचें.
-3x+3x+2y+3y=4+6
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -3x+2y=4 तल्यान -3x-3y=-6 वजा करचो.
2y+3y=4+6
3x कडेन -3x ची बेरीज करची. अटी -3x आनी 3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
5y=4+6
3y कडेन 2y ची बेरीज करची.
5y=10
6 कडेन 4 ची बेरीज करची.
y=2
दोनुय कुशींक 5 न भाग लावचो.
x+2=2
x+y=2 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=0
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
x=0,y=2
प्रणाली आतां सुटावी जाली.