मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+2y=28
पयलें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 4 वरवीं गुणाकार करच्यो, 4,2 चो सामको सामान्य विभाज्य.
4x-3y=24
दुसरें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 12 वरवीं गुणाकार करच्यो, 3,4 चो सामको सामान्य विभाज्य.
x+2y=28,4x-3y=24
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+2y=28
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-2y+28
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
4\left(-2y+28\right)-3y=24
4x-3y=24 ह्या दुस-या समिकरणांत x खातीर -2y+28 बदलपी घेवचो.
-8y+112-3y=24
-2y+28क 4 फावटी गुणचें.
-11y+112=24
-3y कडेन -8y ची बेरीज करची.
-11y=-88
समिकरणाच्या दोनूय कुशींतल्यान 112 वजा करचें.
y=8
दोनुय कुशींक -11 न भाग लावचो.
x=-2\times 8+28
x=-2y+28 त y खातीर 8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-16+28
8क -2 फावटी गुणचें.
x=12
-16 कडेन 28 ची बेरीज करची.
x=12,y=8
प्रणाली आतां सुटावी जाली.
x+2y=28
पयलें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 4 वरवीं गुणाकार करच्यो, 4,2 चो सामको सामान्य विभाज्य.
4x-3y=24
दुसरें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 12 वरवीं गुणाकार करच्यो, 3,4 चो सामको सामान्य विभाज्य.
x+2y=28,4x-3y=24
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 4}&-\frac{2}{-3-2\times 4}\\-\frac{4}{-3-2\times 4}&\frac{1}{-3-2\times 4}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 28+\frac{2}{11}\times 24\\\frac{4}{11}\times 28-\frac{1}{11}\times 24\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
अंकगणीत करचें.
x=12,y=8
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+2y=28
पयलें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 4 वरवीं गुणाकार करच्यो, 4,2 चो सामको सामान्य विभाज्य.
4x-3y=24
दुसरें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 12 वरवीं गुणाकार करच्यो, 3,4 चो सामको सामान्य विभाज्य.
x+2y=28,4x-3y=24
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4x+4\times 2y=4\times 28,4x-3y=24
x आनी 4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
4x+8y=112,4x-3y=24
सोंपें करचें.
4x-4x+8y+3y=112-24
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 4x+8y=112 तल्यान 4x-3y=24 वजा करचो.
8y+3y=112-24
-4x कडेन 4x ची बेरीज करची. अटी 4x आनी -4x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
11y=112-24
3y कडेन 8y ची बेरीज करची.
11y=88
-24 कडेन 112 ची बेरीज करची.
y=8
दोनुय कुशींक 11 न भाग लावचो.
4x-3\times 8=24
4x-3y=24 त y खातीर 8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
4x-24=24
8क -3 फावटी गुणचें.
4x=48
समिकरणाच्या दोनूय कुशींतल्यान 24 ची बेरीज करची.
x=12
दोनुय कुशींक 4 न भाग लावचो.
x=12,y=8
प्रणाली आतां सुटावी जाली.