x, y खातीर सोडोवचें
x=15
y=-6
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
2x-3y=48
पयलें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 6 वरवीं गुणाकार करच्यो, 3,2 चो सामको सामान्य विभाज्य.
3x+5y=15
दुसरें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 15 वरवीं गुणाकार करच्यो, 5,3 चो सामको सामान्य विभाज्य.
2x-3y=48,3x+5y=15
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x-3y=48
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=3y+48
समिकरणाच्या दोनूय कुशींतल्यान 3y ची बेरीज करची.
x=\frac{1}{2}\left(3y+48\right)
दोनुय कुशींक 2 न भाग लावचो.
x=\frac{3}{2}y+24
48+3yक \frac{1}{2} फावटी गुणचें.
3\left(\frac{3}{2}y+24\right)+5y=15
3x+5y=15 ह्या दुस-या समिकरणांत x खातीर \frac{3y}{2}+24 बदलपी घेवचो.
\frac{9}{2}y+72+5y=15
\frac{3y}{2}+24क 3 फावटी गुणचें.
\frac{19}{2}y+72=15
5y कडेन \frac{9y}{2} ची बेरीज करची.
\frac{19}{2}y=-57
समिकरणाच्या दोनूय कुशींतल्यान 72 वजा करचें.
y=-6
\frac{19}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{3}{2}\left(-6\right)+24
x=\frac{3}{2}y+24 त y खातीर -6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-9+24
-6क \frac{3}{2} फावटी गुणचें.
x=15
-9 कडेन 24 ची बेरीज करची.
x=15,y=-6
प्रणाली आतां सुटावी जाली.
2x-3y=48
पयलें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 6 वरवीं गुणाकार करच्यो, 3,2 चो सामको सामान्य विभाज्य.
3x+5y=15
दुसरें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 15 वरवीं गुणाकार करच्यो, 5,3 चो सामको सामान्य विभाज्य.
2x-3y=48,3x+5y=15
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\15\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 3\right)}&-\frac{-3}{2\times 5-\left(-3\times 3\right)}\\-\frac{3}{2\times 5-\left(-3\times 3\right)}&\frac{2}{2\times 5-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 48+\frac{3}{19}\times 15\\-\frac{3}{19}\times 48+\frac{2}{19}\times 15\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-6\end{matrix}\right)
अंकगणीत करचें.
x=15,y=-6
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x-3y=48
पयलें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 6 वरवीं गुणाकार करच्यो, 3,2 चो सामको सामान्य विभाज्य.
3x+5y=15
दुसरें समिकरण विचारांत घेवचें. समीकरणाच्यो दोनूय बाजू 15 वरवीं गुणाकार करच्यो, 5,3 चो सामको सामान्य विभाज्य.
2x-3y=48,3x+5y=15
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 2x+3\left(-3\right)y=3\times 48,2\times 3x+2\times 5y=2\times 15
2x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
6x-9y=144,6x+10y=30
सोंपें करचें.
6x-6x-9y-10y=144-30
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 6x-9y=144 तल्यान 6x+10y=30 वजा करचो.
-9y-10y=144-30
-6x कडेन 6x ची बेरीज करची. अटी 6x आनी -6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-19y=144-30
-10y कडेन -9y ची बेरीज करची.
-19y=114
-30 कडेन 144 ची बेरीज करची.
y=-6
दोनुय कुशींक -19 न भाग लावचो.
3x+5\left(-6\right)=15
3x+5y=15 त y खातीर -6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x-30=15
-6क 5 फावटी गुणचें.
3x=45
समिकरणाच्या दोनूय कुशींतल्यान 30 ची बेरीज करची.
x=15
दोनुय कुशींक 3 न भाग लावचो.
x=15,y=-6
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}