y, x, z, a, b, c, d खातीर सोडोवचें
d = \frac{23}{2} = 11\frac{1}{2} = 11.5
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
1=-2x+6
दुसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
-2x+6=1
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
-2x=1-6
दोनूय कुशींतल्यान 6 वजा करचें.
-2x=-5
-5 मेळोवंक 1 आनी 6 वजा करचे.
x=\frac{-5}{-2}
दोनुय कुशींक -2 न भाग लावचो.
x=\frac{5}{2}
न्युमरेटर आनी डिनोमिनेटर अशा दोघांतल्यानूय नकारात्मक चिन्न वगळावंन अपूर्णांक \frac{-5}{-2} हो \frac{5}{2} कडेन सोंपो करूंक शकतात.
z=5\times \frac{5}{2}-1
तिसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
z=\frac{25}{2}-1
\frac{25}{2} मेळोवंक 5 आनी \frac{5}{2} गुणचें.
z=\frac{23}{2}
\frac{23}{2} मेळोवंक \frac{25}{2} आनी 1 वजा करचे.
a=\frac{23}{2}
चवथें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
b=\frac{23}{2}
पाचवें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
c=\frac{23}{2}
समिकरण (6) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
d=\frac{23}{2}
समिकरण (7) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
y=1 x=\frac{5}{2} z=\frac{23}{2} a=\frac{23}{2} b=\frac{23}{2} c=\frac{23}{2} d=\frac{23}{2}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}