\left. \begin{array} { l } { k = 1 + 5 }\\ { l = {(\frac{2}{3})} ^ {k} }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { \text{Solve for } y \text{ where} } \\ { y = x } \end{array} \right.
k, l, m, n, o, p, q, r, s, t, u, v, w, x, y खातीर सोडोवचें
y=\frac{64}{729}\approx 0.087791495
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
k=6
पयलें समिकरण विचारांत घेवचें. 6 मेळोवंक 1 आनी 5 ची बेरीज करची.
l=\left(\frac{2}{3}\right)^{6}
दुसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
l=\frac{64}{729}
\frac{64}{729} मेळोवंक 6 चो \frac{2}{3} पॉवर मेजचो.
m=\frac{64}{729}
तिसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
n=\frac{64}{729}
चवथें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
o=\frac{64}{729}
पाचवें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
p=\frac{64}{729}
समिकरण (6) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
q=\frac{64}{729}
समिकरण (7) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
r=\frac{64}{729}
समिकरण (8) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
s=\frac{64}{729}
समिकरण (9) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
t=\frac{64}{729}
समिकरण (10) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
u=\frac{64}{729}
समिकरण (11) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
v=\frac{64}{729}
समिकरण (12) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
w=\frac{64}{729}
समिकरण (13) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
x=\frac{64}{729}
समिकरण (14) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
y=\frac{64}{729}
समिकरण (15) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
k=6 l=\frac{64}{729} m=\frac{64}{729} n=\frac{64}{729} o=\frac{64}{729} p=\frac{64}{729} q=\frac{64}{729} r=\frac{64}{729} s=\frac{64}{729} t=\frac{64}{729} u=\frac{64}{729} v=\frac{64}{729} w=\frac{64}{729} x=\frac{64}{729} y=\frac{64}{729}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}