p, q, r, s, t, u, v, w, x, y खातीर सोडोवचें
y=6
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
p=13
पयलें समिकरण विचारांत घेवचें. कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
q=6
दुसरें समिकरण विचारांत घेवचें. 6 मेळोवंक 0.5 आनी 12 गुणचें.
r=6
तिसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
s=6
चवथें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
t=6
पाचवें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
u=6
समिकरण (6) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
v=6
समिकरण (7) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
w=6
समिकरण (8) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
x=6
समिकरण (9) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
y=6
समिकरण (10) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
p=13 q=6 r=6 s=6 t=6 u=6 v=6 w=6 x=6 y=6
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}