\left. \begin{array} { l } { -1 \cdot 5 {(3 + 22 t)} = 12 }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { y = x }\\ { z = y }\\ { a = z }\\ { b = a }\\ { c = b }\\ { \text{Solve for } d \text{ where} } \\ { d = c } \end{array} \right.
t, u, v, w, x, y, z, a, b, c, d खातीर सोडोवचें
d=-\frac{27}{110}\approx -0.245454545
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-5\left(3+22t\right)=12
पयलें समिकरण विचारांत घेवचें. -5 मेळोवंक -1 आनी 5 गुणचें.
-15-110t=12
3+22t न -5 गुणपाक विभाजक विशमाचो वापर करचो.
-110t=12+15
दोनूय वटांनी 15 जोडचे.
-110t=27
27 मेळोवंक 12 आनी 15 ची बेरीज करची.
t=-\frac{27}{110}
दोनुय कुशींक -110 न भाग लावचो.
u=-\frac{27}{110}
दुसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
v=-\frac{27}{110}
तिसरें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
w=-\frac{27}{110}
चवथें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
x=-\frac{27}{110}
पाचवें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
y=-\frac{27}{110}
समिकरण (6) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
z=-\frac{27}{110}
समिकरण (7) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
a=-\frac{27}{110}
समिकरण (8) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
b=-\frac{27}{110}
समिकरण (9) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
c=-\frac{27}{110}
समिकरण (10) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
d=-\frac{27}{110}
समिकरण (11) विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
t=-\frac{27}{110} u=-\frac{27}{110} v=-\frac{27}{110} w=-\frac{27}{110} x=-\frac{27}{110} y=-\frac{27}{110} z=-\frac{27}{110} a=-\frac{27}{110} b=-\frac{27}{110} c=-\frac{27}{110} d=-\frac{27}{110}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}