मुखेल आशय वगडाय
y, x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-x=3
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-x=3,-2y+5x=0
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-x=3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=x+3
समिकरणाच्या दोनूय कुशींतल्यान x ची बेरीज करची.
-2\left(x+3\right)+5x=0
-2y+5x=0 ह्या दुस-या समिकरणांत y खातीर x+3 बदलपी घेवचो.
-2x-6+5x=0
x+3क -2 फावटी गुणचें.
3x-6=0
5x कडेन -2x ची बेरीज करची.
3x=6
समिकरणाच्या दोनूय कुशींतल्यान 6 ची बेरीज करची.
x=2
दोनुय कुशींक 3 न भाग लावचो.
y=2+3
y=x+3 त x खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=5
2 कडेन 3 ची बेरीज करची.
y=5,x=2
प्रणाली आतां सुटावी जाली.
y-x=3
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-x=3,-2y+5x=0
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\left(-2\right)\right)}&-\frac{-1}{5-\left(-\left(-2\right)\right)}\\-\frac{-2}{5-\left(-\left(-2\right)\right)}&\frac{1}{5-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\times 3\\\frac{2}{3}\times 3\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
अंकगणीत करचें.
y=5,x=2
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-x=3
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-x=3,-2y+5x=0
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-2y-2\left(-1\right)x=-2\times 3,-2y+5x=0
y आनी -2y बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
-2y+2x=-6,-2y+5x=0
सोंपें करचें.
-2y+2y+2x-5x=-6
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -2y+2x=-6 तल्यान -2y+5x=0 वजा करचो.
2x-5x=-6
2y कडेन -2y ची बेरीज करची. अटी -2y आनी 2y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-3x=-6
-5x कडेन 2x ची बेरीज करची.
x=2
दोनुय कुशींक -3 न भाग लावचो.
-2y+5\times 2=0
-2y+5x=0 त x खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
-2y+10=0
2क 5 फावटी गुणचें.
-2y=-10
समिकरणाच्या दोनूय कुशींतल्यान 10 वजा करचें.
y=5
दोनुय कुशींक -2 न भाग लावचो.
y=5,x=2
प्रणाली आतां सुटावी जाली.