मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x-y=17,x-y=10
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x-y=17
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=y+17
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
x=\frac{1}{2}\left(y+17\right)
दोनुय कुशींक 2 न भाग लावचो.
x=\frac{1}{2}y+\frac{17}{2}
y+17क \frac{1}{2} फावटी गुणचें.
\frac{1}{2}y+\frac{17}{2}-y=10
x-y=10 ह्या दुस-या समिकरणांत x खातीर \frac{17+y}{2} बदलपी घेवचो.
-\frac{1}{2}y+\frac{17}{2}=10
-y कडेन \frac{y}{2} ची बेरीज करची.
-\frac{1}{2}y=\frac{3}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{17}{2} वजा करचें.
y=-3
दोनूय कुशीनीं -2 न गुणचें.
x=\frac{1}{2}\left(-3\right)+\frac{17}{2}
x=\frac{1}{2}y+\frac{17}{2} त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-3+17}{2}
-3क \frac{1}{2} फावटी गुणचें.
x=7
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{3}{2} क \frac{17}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=7,y=-3
प्रणाली आतां सुटावी जाली.
2x-y=17,x-y=10
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\10\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}17\\10\end{matrix}\right)
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}17\\10\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}17\\10\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{-1}{2\left(-1\right)-\left(-1\right)}\\-\frac{1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}17\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}17\\10\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17-10\\17-2\times 10\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-3\end{matrix}\right)
अंकगणीत करचें.
x=7,y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x-y=17,x-y=10
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2x-x-y+y=17-10
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2x-y=17 तल्यान x-y=10 वजा करचो.
2x-x=17-10
y कडेन -y ची बेरीज करची. अटी -y आनी y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
x=17-10
-x कडेन 2x ची बेरीज करची.
x=7
-10 कडेन 17 ची बेरीज करची.
7-y=10
x-y=10 त x खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
-y=3
समिकरणाच्या दोनूय कुशींतल्यान 7 वजा करचें.
x=7,y=-3
प्रणाली आतां सुटावी जाली.