x, y खातीर सोडोवचें
x=\sqrt{2}+1\approx 2.414213562
y=\frac{\sqrt{2}}{2}\approx 0.707106781
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{1-\frac{2}{\sqrt{2}+1+1}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
पयलें समिकरण विचारांत घेवचें. समिकरणात अचल संख्येची ज्ञात मानां रिगोवचीं.
\frac{1-\frac{2}{\sqrt{2}+2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
2 मेळोवंक 1 आनी 1 ची बेरीज करची.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
न्युमरेटर आनी डिनोमिनेटर \sqrt{2}-2 न गुणून \frac{2}{\sqrt{2}+2} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
विचारांत घेयात \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{2-4}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
\sqrt{2} वर्गमूळ. 2 वर्गमूळ.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{-2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
-2 मेळोवंक 2 आनी 4 वजा करचे.
\frac{1-\left(-\left(\sqrt{2}-2\right)\right)}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
-2 आनी -2 रद्द करचें.
\frac{1+\sqrt{2}-2}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
-\left(\sqrt{2}-2\right) च्या विरुध्दार्थी अंक \sqrt{2}-2 आसा.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
-1 मेळोवंक 1 आनी 2 वजा करचे.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(\sqrt{2}+1\right)^{2}.
\frac{-1+\sqrt{2}}{\frac{2+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
\sqrt{2} चो वर्ग 2 आसा.
\frac{-1+\sqrt{2}}{\frac{3+2\sqrt{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
3 मेळोवंक 2 आनी 1 ची बेरीज करची.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+1+1}}=y
4 मेळोवंक 3 आनी 1 ची बेरीज करची.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2}}=y
2 मेळोवंक 1 आनी 1 ची बेरीज करची.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}=y
न्युमरेटर आनी डिनोमिनेटर \sqrt{2}-2 न गुणून \frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}=y
विचारांत घेयात \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{2-4}}=y
\sqrt{2} वर्गमूळ. 2 वर्गमूळ.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}}=y
-2 मेळोवंक 2 आनी 4 वजा करचे.
\frac{\left(-1+\sqrt{2}\right)\left(-2\right)}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2} च्या पुरकाक -1+\sqrt{2} गुणून \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2} न -1+\sqrt{2} क भाग लावचो.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
-2 न -1+\sqrt{2} गुणपाक विभाजक विशमाचो वापर करचो.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\sqrt{2}-2\right)\left(\sqrt{2}-2\right)}=y
\sqrt{2}+1 न -2 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{2-2\sqrt{2}}{\left(4-2\right)\left(\sqrt{2}-2\right)}=y
0 मेळोवंक 2\sqrt{2} आनी -2\sqrt{2} एकठांय करचें.
\frac{2-2\sqrt{2}}{2\left(\sqrt{2}-2\right)}=y
2 मेळोवंक 4 आनी 2 वजा करचे.
\frac{2-2\sqrt{2}}{2\sqrt{2}-4}=y
\sqrt{2}-2 न 2 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right)}=y
न्युमरेटर आनी डिनोमिनेटर 2\sqrt{2}+4 न गुणून \frac{2-2\sqrt{2}}{2\sqrt{2}-4} चो डिनोमिनेटर रेशनलायझ तर्कसंगत करचो.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}=y
विचारांत घेयात \left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}=y
\left(2\sqrt{2}\right)^{2} विस्तारीत करचो.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}=y
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\times 2-4^{2}}=y
\sqrt{2} चो वर्ग 2 आसा.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-4^{2}}=y
8 मेळोवंक 4 आनी 2 गुणचें.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-16}=y
16 मेळोवंक 2 चो 4 पॉवर मेजचो.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}=y
-8 मेळोवंक 8 आनी 16 वजा करचे.
y=\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
y=\frac{-4\sqrt{2}+8-4\left(\sqrt{2}\right)^{2}}{-8}
वितरक गूणधर्माचो वापर करून 2-2\sqrt{2} क 2\sqrt{2}+4 न गुणचें आनी संज्ञां भशेन एकठावणी करची.
y=\frac{-4\sqrt{2}+8-4\times 2}{-8}
\sqrt{2} चो वर्ग 2 आसा.
y=\frac{-4\sqrt{2}+8-8}{-8}
-8 मेळोवंक -4 आनी 2 गुणचें.
y=\frac{-4\sqrt{2}}{-8}
0 मेळोवंक 8 आनी 8 वजा करचे.
y=\frac{1}{2}\sqrt{2}
\frac{1}{2}\sqrt{2} मेळोवंक -4\sqrt{2} क -8 न भाग लावचो.
x=\sqrt{2}+1 y=\frac{1}{2}\sqrt{2}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}