\left( \begin{array} { l l } { 1 } & { 3 } \\ { 2 } & { 6 } \end{array} \right) \times \left( \begin{array} { l l } { 4 } & { 9 } \\ { 2 } & { 8 } \end{array} \right)
मूल्यांकन करचें
\left(\begin{matrix}10&33\\20&66\end{matrix}\right)
निर्णायक मेजचो
0
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\left(\begin{matrix}1&3\\2&6\end{matrix}\right)\left(\begin{matrix}4&9\\2&8\end{matrix}\right)
पयल्या मॅट्रिक्सांतली संख्या दुस-या मॅट्रिक्सांतल्या रांकांच्या संख्ये समान आसल्यारूच मॅट्रिक्स गुणाकाराची व्याख्या जाता.
\left(\begin{matrix}4+3\times 2&\\&\end{matrix}\right)
दुसऱ्या मॅट्रिक्साच्या पयल्या स्तंभाच्या अनुरूप मुलतत्वा वरवीं पयल्या मॅट्रिक्साच्या पयल्या रांकेच्या दरेक मुलतत्वाक गुणचें आनी मागीर पयल्या रांकेतलें मूलतत्व, गुणाकार मॅट्रिक्साच्या पयल्या स्तंभातलें मूलतत्व मेळोवंक ह्या गुणाकारांची बेरीज करची.
\left(\begin{matrix}4+3\times 2&9+3\times 8\\2\times 4+6\times 2&2\times 9+6\times 8\end{matrix}\right)
गुणाकार मॅट्रिक्साचीं उरिल्ली मुलतत्वां अशेच तरेन काडूंक शकतात.
\left(\begin{matrix}4+6&9+24\\8+12&18+48\end{matrix}\right)
दरेक संज्ञेचो गुणाकार करूंन दरेक मूलतत्व सोंपें करचें.
\left(\begin{matrix}10&33\\20&66\end{matrix}\right)
मॅट्रिक्साच्या दरेक मुलतत्वाची बेरीज.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}