मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

det(\left(\begin{matrix}1&1&-1\\0&1&2\\1&1&0\end{matrix}\right))
कर्णरेशा पद्दत वापरून मॅट्रिक्साचो निर्णायक सोदचो.
\left(\begin{matrix}1&1&-1&1&1\\0&1&2&0&1\\1&1&0&1&1\end{matrix}\right)
पयले दोन स्तंभ चवथे आनी पांचवे स्तंभ म्हूण पुनरावृत्ती करूंन मुळावे मॅट्रिक्स विस्तारीत करचे.
2=2
वयल्या दाव्या नोंदीतल्यान सुरवात करूंन, कर्णरेशे लागसार सकयल गुणाकार करचो आनी येवपी गुणाकाराची बेरीज करची.
-1+2=1
सकयल्या दाव्या नोंदीतल्यान सुरवात करूंन, कर्णरेशेच्या कुशीन गुणचें आनी येवपी गुणाकार मेजचो.
2-1
देंवते कर्णरेशा गुणाकारांच्या बेरीजीतल्यान चडट्या कर्णरेशा गुणाकारांच्या बेरीजीची वजा करची.
1
2 तल्यान 1 वजा करची.
det(\left(\begin{matrix}1&1&-1\\0&1&2\\1&1&0\end{matrix}\right))
गौणांनी विस्तारपाच्या पद्दतीचो वापर करून मॅट्रिक्साचो निर्णायक सोदचो (हाका सहगुणकपदांनी विस्तारप अशेंय म्हणटात).
det(\left(\begin{matrix}1&2\\1&0\end{matrix}\right))-det(\left(\begin{matrix}0&2\\1&0\end{matrix}\right))-det(\left(\begin{matrix}0&1\\1&1\end{matrix}\right))
गौणां वरवीं विस्तारूंक, पयल्या रांकेचे दरेक मूलतत्व तांच्या गौणां वरवीं, ते मूलतत्व आसपी रांक आनी स्तंभ वगळावन निर्माण केल्ले जे 2\times 2 मॅट्रिक्सचे निर्णायक आसात, मागीर मूलतत्वाच्या स्थिती चिन्ना वरवीं गुणाकार करून, गुणचे.
-2-\left(-2\right)-\left(-1\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, निर्णायक आसा ad-bc.
1
निमाणो निकाल मेळोवंक संज्ञांची बेरीज करची.