मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
गुणकपद
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

det(\left(\begin{matrix}13&5&-7\\6&1&-12\\20&9&-3\end{matrix}\right))
कर्णरेशा पद्दत वापरून मॅट्रिक्साचो निर्णायक सोदचो.
\left(\begin{matrix}13&5&-7&13&5\\6&1&-12&6&1\\20&9&-3&20&9\end{matrix}\right)
पयले दोन स्तंभ चवथे आनी पांचवे स्तंभ म्हूण पुनरावृत्ती करूंन मुळावे मॅट्रिक्स विस्तारीत करचे.
13\left(-3\right)+5\left(-12\right)\times 20-7\times 6\times 9=-1617
वयल्या दाव्या नोंदीतल्यान सुरवात करूंन, कर्णरेशे लागसार सकयल गुणाकार करचो आनी येवपी गुणाकाराची बेरीज करची.
20\left(-7\right)+9\left(-12\right)\times 13-3\times 6\times 5=-1634
सकयल्या दाव्या नोंदीतल्यान सुरवात करूंन, कर्णरेशेच्या कुशीन गुणचें आनी येवपी गुणाकार मेजचो.
-1617-\left(-1634\right)
देंवते कर्णरेशा गुणाकारांच्या बेरीजीतल्यान चडट्या कर्णरेशा गुणाकारांच्या बेरीजीची वजा करची.
17
-1617 तल्यान -1634 वजा करची.
det(\left(\begin{matrix}13&5&-7\\6&1&-12\\20&9&-3\end{matrix}\right))
गौणांनी विस्तारपाच्या पद्दतीचो वापर करून मॅट्रिक्साचो निर्णायक सोदचो (हाका सहगुणकपदांनी विस्तारप अशेंय म्हणटात).
13det(\left(\begin{matrix}1&-12\\9&-3\end{matrix}\right))-5det(\left(\begin{matrix}6&-12\\20&-3\end{matrix}\right))-7det(\left(\begin{matrix}6&1\\20&9\end{matrix}\right))
गौणां वरवीं विस्तारूंक, पयल्या रांकेचे दरेक मूलतत्व तांच्या गौणां वरवीं, ते मूलतत्व आसपी रांक आनी स्तंभ वगळावन निर्माण केल्ले जे 2\times 2 मॅट्रिक्सचे निर्णायक आसात, मागीर मूलतत्वाच्या स्थिती चिन्ना वरवीं गुणाकार करून, गुणचे.
13\left(-3-9\left(-12\right)\right)-5\left(6\left(-3\right)-20\left(-12\right)\right)-7\left(6\times 9-20\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, निर्णायक आसा ad-bc.
13\times 105-5\times 222-7\times 34
सोंपें करचें.
17
निमाणो निकाल मेळोवंक संज्ञांची बेरीज करची.