\left\{ \begin{array} { l } { y = 5 + x } \\ { 5 x - 2 y = 2 } \end{array} \right.
y, x खातीर सोडोवचें
x=4
y=9
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
y-x=5
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-x=5,-2y+5x=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-x=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=x+5
समिकरणाच्या दोनूय कुशींतल्यान x ची बेरीज करची.
-2\left(x+5\right)+5x=2
-2y+5x=2 ह्या दुस-या समिकरणांत y खातीर x+5 बदलपी घेवचो.
-2x-10+5x=2
x+5क -2 फावटी गुणचें.
3x-10=2
5x कडेन -2x ची बेरीज करची.
3x=12
समिकरणाच्या दोनूय कुशींतल्यान 10 ची बेरीज करची.
x=4
दोनुय कुशींक 3 न भाग लावचो.
y=4+5
y=x+5 त x खातीर 4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=9
4 कडेन 5 ची बेरीज करची.
y=9,x=4
प्रणाली आतां सुटावी जाली.
y-x=5
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-x=5,-2y+5x=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&5\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\left(-2\right)\right)}&-\frac{-1}{5-\left(-\left(-2\right)\right)}\\-\frac{-2}{5-\left(-\left(-2\right)\right)}&\frac{1}{5-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\times 5+\frac{1}{3}\times 2\\\frac{2}{3}\times 5+\frac{1}{3}\times 2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\4\end{matrix}\right)
अंकगणीत करचें.
y=9,x=4
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-x=5
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान x वजा करचें.
y-x=5,-2y+5x=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-2y-2\left(-1\right)x=-2\times 5,-2y+5x=2
y आनी -2y बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
-2y+2x=-10,-2y+5x=2
सोंपें करचें.
-2y+2y+2x-5x=-10-2
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -2y+2x=-10 तल्यान -2y+5x=2 वजा करचो.
2x-5x=-10-2
2y कडेन -2y ची बेरीज करची. अटी -2y आनी 2y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-3x=-10-2
-5x कडेन 2x ची बेरीज करची.
-3x=-12
-2 कडेन -10 ची बेरीज करची.
x=4
दोनुय कुशींक -3 न भाग लावचो.
-2y+5\times 4=2
-2y+5x=2 त x खातीर 4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
-2y+20=2
4क 5 फावटी गुणचें.
-2y=-18
समिकरणाच्या दोनूय कुशींतल्यान 20 वजा करचें.
y=9
दोनुय कुशींक -2 न भाग लावचो.
y=9,x=4
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}