मुखेल आशय वगडाय
y, x खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

y-3x=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 3x वजा करचें.
y-3x=0,y+x=16
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
y-3x=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
y=3x
समिकरणाच्या दोनूय कुशींतल्यान 3x ची बेरीज करची.
3x+x=16
y+x=16 ह्या दुस-या समिकरणांत y खातीर 3x बदलपी घेवचो.
4x=16
x कडेन 3x ची बेरीज करची.
x=4
दोनुय कुशींक 4 न भाग लावचो.
y=3\times 4
y=3x त x खातीर 4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=12
4क 3 फावटी गुणचें.
y=12,x=4
प्रणाली आतां सुटावी जाली.
y-3x=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 3x वजा करचें.
y-3x=0,y+x=16
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-3}{1-\left(-3\right)}\\-\frac{1}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 16\\\frac{1}{4}\times 16\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}12\\4\end{matrix}\right)
अंकगणीत करचें.
y=12,x=4
मॅट्रिक्स मुलतत्वां y आनी x काडचीं.
y-3x=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान 3x वजा करचें.
y-3x=0,y+x=16
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
y-y-3x-x=-16
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून y-3x=0 तल्यान y+x=16 वजा करचो.
-3x-x=-16
-y कडेन y ची बेरीज करची. अटी y आनी -y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-4x=-16
-x कडेन -3x ची बेरीज करची.
x=4
दोनुय कुशींक -4 न भाग लावचो.
y+4=16
y+x=16 त x खातीर 4 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=12
समिकरणाच्या दोनूय कुशींतल्यान 4 वजा करचें.
y=12,x=4
प्रणाली आतां सुटावी जाली.