मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-y=3,3x-4y=2
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-y=3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=y+3
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
3\left(y+3\right)-4y=2
3x-4y=2 ह्या दुस-या समिकरणांत x खातीर y+3 बदलपी घेवचो.
3y+9-4y=2
y+3क 3 फावटी गुणचें.
-y+9=2
-4y कडेन 3y ची बेरीज करची.
-y=-7
समिकरणाच्या दोनूय कुशींतल्यान 9 वजा करचें.
y=7
दोनुय कुशींक -1 न भाग लावचो.
x=7+3
x=y+3 त y खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=10
7 कडेन 3 ची बेरीज करची.
x=10,y=7
प्रणाली आतां सुटावी जाली.
x-y=3,3x-4y=2
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-3\right)}&-\frac{-1}{-4-\left(-3\right)}\\-\frac{3}{-4-\left(-3\right)}&\frac{1}{-4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 3-2\\3\times 3-2\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\7\end{matrix}\right)
अंकगणीत करचें.
x=10,y=7
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-y=3,3x-4y=2
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+3\left(-1\right)y=3\times 3,3x-4y=2
x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
3x-3y=9,3x-4y=2
सोंपें करचें.
3x-3x-3y+4y=9-2
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x-3y=9 तल्यान 3x-4y=2 वजा करचो.
-3y+4y=9-2
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
y=9-2
4y कडेन -3y ची बेरीज करची.
y=7
-2 कडेन 9 ची बेरीज करची.
3x-4\times 7=2
3x-4y=2 त y खातीर 7 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x-28=2
7क -4 फावटी गुणचें.
3x=30
समिकरणाच्या दोनूय कुशींतल्यान 28 ची बेरीज करची.
x=10
दोनुय कुशींक 3 न भाग लावचो.
x=10,y=7
प्रणाली आतां सुटावी जाली.