\left\{ \begin{array} { l } { x - y + 2 = 0 } \\ { x + y - 4 = 0 } \end{array} \right.
x, y खातीर सोडोवचें
x=1
y=3
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x-y+2=0,x+y-4=0
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-y+2=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x-y=-2
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
x=y-2
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
y-2+y-4=0
x+y-4=0 ह्या दुस-या समिकरणांत x खातीर y-2 बदलपी घेवचो.
2y-2-4=0
y कडेन y ची बेरीज करची.
2y-6=0
-4 कडेन -2 ची बेरीज करची.
2y=6
समिकरणाच्या दोनूय कुशींतल्यान 6 ची बेरीज करची.
y=3
दोनुय कुशींक 2 न भाग लावचो.
x=3-2
x=y-2 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=1
3 कडेन -2 ची बेरीज करची.
x=1,y=3
प्रणाली आतां सुटावी जाली.
x-y+2=0,x+y-4=0
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\\-\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 4\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
अंकगणीत करचें.
x=1,y=3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-y+2=0,x+y-4=0
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-x-y-y+2+4=0
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x-y+2=0 तल्यान x+y-4=0 वजा करचो.
-y-y+2+4=0
-x कडेन x ची बेरीज करची. अटी x आनी -x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-2y+2+4=0
-y कडेन -y ची बेरीज करची.
-2y+6=0
4 कडेन 2 ची बेरीज करची.
-2y=-6
समिकरणाच्या दोनूय कुशींतल्यान 6 वजा करचें.
y=3
दोनुय कुशींक -2 न भाग लावचो.
x+3-4=0
x+y-4=0 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x-1=0
-4 कडेन 3 ची बेरीज करची.
x=1
समिकरणाच्या दोनूय कुशींतल्यान 1 ची बेरीज करची.
x=1,y=3
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}