मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-2y=17,7x-6y=47
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-2y=17
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=2y+17
समिकरणाच्या दोनूय कुशींतल्यान 2y ची बेरीज करची.
7\left(2y+17\right)-6y=47
7x-6y=47 ह्या दुस-या समिकरणांत x खातीर 2y+17 बदलपी घेवचो.
14y+119-6y=47
2y+17क 7 फावटी गुणचें.
8y+119=47
-6y कडेन 14y ची बेरीज करची.
8y=-72
समिकरणाच्या दोनूय कुशींतल्यान 119 वजा करचें.
y=-9
दोनुय कुशींक 8 न भाग लावचो.
x=2\left(-9\right)+17
x=2y+17 त y खातीर -9 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-18+17
-9क 2 फावटी गुणचें.
x=-1
-18 कडेन 17 ची बेरीज करची.
x=-1,y=-9
प्रणाली आतां सुटावी जाली.
x-2y=17,7x-6y=47
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\47\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-\left(-2\times 7\right)}&-\frac{-2}{-6-\left(-2\times 7\right)}\\-\frac{7}{-6-\left(-2\times 7\right)}&\frac{1}{-6-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{1}{4}\\-\frac{7}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\times 17+\frac{1}{4}\times 47\\-\frac{7}{8}\times 17+\frac{1}{8}\times 47\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-9\end{matrix}\right)
अंकगणीत करचें.
x=-1,y=-9
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-2y=17,7x-6y=47
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
7x+7\left(-2\right)y=7\times 17,7x-6y=47
x आनी 7x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 7 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
7x-14y=119,7x-6y=47
सोंपें करचें.
7x-7x-14y+6y=119-47
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 7x-14y=119 तल्यान 7x-6y=47 वजा करचो.
-14y+6y=119-47
-7x कडेन 7x ची बेरीज करची. अटी 7x आनी -7x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-8y=119-47
6y कडेन -14y ची बेरीज करची.
-8y=72
-47 कडेन 119 ची बेरीज करची.
y=-9
दोनुय कुशींक -8 न भाग लावचो.
7x-6\left(-9\right)=47
7x-6y=47 त y खातीर -9 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
7x+54=47
-9क -6 फावटी गुणचें.
7x=-7
समिकरणाच्या दोनूय कुशींतल्यान 54 वजा करचें.
x=-1
दोनुय कुशींक 7 न भाग लावचो.
x=-1,y=-9
प्रणाली आतां सुटावी जाली.