\left\{ \begin{array} { l } { x - 2 = y } \\ { 2 x + 4 = y } \end{array} \right.
x, y खातीर सोडोवचें
x=-6
y=-8
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x-2-y=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=2
दोनूय वटांनी 2 जोडचे. किदेंय अदीक शुन्य तें दितां.
2x+4-y=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
2x-y=-4
दोनूय कुशींतल्यान 4 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x-y=2,2x-y=-4
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-y=2
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=y+2
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
2\left(y+2\right)-y=-4
2x-y=-4 ह्या दुस-या समिकरणांत x खातीर y+2 बदलपी घेवचो.
2y+4-y=-4
y+2क 2 फावटी गुणचें.
y+4=-4
-y कडेन 2y ची बेरीज करची.
y=-8
समिकरणाच्या दोनूय कुशींतल्यान 4 वजा करचें.
x=-8+2
x=y+2 त y खातीर -8 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-6
-8 कडेन 2 ची बेरीज करची.
x=-6,y=-8
प्रणाली आतां सुटावी जाली.
x-2-y=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=2
दोनूय वटांनी 2 जोडचे. किदेंय अदीक शुन्य तें दितां.
2x+4-y=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
2x-y=-4
दोनूय कुशींतल्यान 4 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x-y=2,2x-y=-4
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2-4\\-2\times 2-4\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-8\end{matrix}\right)
अंकगणीत करचें.
x=-6,y=-8
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-2-y=0
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=2
दोनूय वटांनी 2 जोडचे. किदेंय अदीक शुन्य तें दितां.
2x+4-y=0
दुसरें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
2x-y=-4
दोनूय कुशींतल्यान 4 वजा करचें. किदेंय शुन्यातल्यान वजा केल्यार अभाव दाखयता.
x-y=2,2x-y=-4
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-2x-y+y=2+4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x-y=2 तल्यान 2x-y=-4 वजा करचो.
x-2x=2+4
y कडेन -y ची बेरीज करची. अटी -y आनी y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-x=2+4
-2x कडेन x ची बेरीज करची.
-x=6
4 कडेन 2 ची बेरीज करची.
x=-6
दोनुय कुशींक -1 न भाग लावचो.
2\left(-6\right)-y=-4
2x-y=-4 त x खातीर -6 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
-12-y=-4
-6क 2 फावटी गुणचें.
-y=8
समिकरणाच्या दोनूय कुशींतल्यान 12 ची बेरीज करची.
y=-8
दोनुय कुशींक -1 न भाग लावचो.
x=-6,y=-8
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}