मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-y=3
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=3,7x-5y=19
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-y=3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=y+3
समिकरणाच्या दोनूय कुशींतल्यान y ची बेरीज करची.
7\left(y+3\right)-5y=19
7x-5y=19 ह्या दुस-या समिकरणांत x खातीर y+3 बदलपी घेवचो.
7y+21-5y=19
y+3क 7 फावटी गुणचें.
2y+21=19
-5y कडेन 7y ची बेरीज करची.
2y=-2
समिकरणाच्या दोनूय कुशींतल्यान 21 वजा करचें.
y=-1
दोनुय कुशींक 2 न भाग लावचो.
x=-1+3
x=y+3 त y खातीर -1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=2
-1 कडेन 3 ची बेरीज करची.
x=2,y=-1
प्रणाली आतां सुटावी जाली.
x-y=3
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=3,7x-5y=19
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\19\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-7\right)}&-\frac{-1}{-5-\left(-7\right)}\\-\frac{7}{-5-\left(-7\right)}&\frac{1}{-5-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{1}{2}\\-\frac{7}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 3+\frac{1}{2}\times 19\\-\frac{7}{2}\times 3+\frac{1}{2}\times 19\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
अंकगणीत करचें.
x=2,y=-1
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-y=3
पयलें समिकरण विचारांत घेवचें. दोनूय कुशींतल्यान y वजा करचें.
x-y=3,7x-5y=19
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
7x+7\left(-1\right)y=7\times 3,7x-5y=19
x आनी 7x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 7 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
7x-7y=21,7x-5y=19
सोंपें करचें.
7x-7x-7y+5y=21-19
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 7x-7y=21 तल्यान 7x-5y=19 वजा करचो.
-7y+5y=21-19
-7x कडेन 7x ची बेरीज करची. अटी 7x आनी -7x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-2y=21-19
5y कडेन -7y ची बेरीज करची.
-2y=2
-19 कडेन 21 ची बेरीज करची.
y=-1
दोनुय कुशींक -2 न भाग लावचो.
7x-5\left(-1\right)=19
7x-5y=19 त y खातीर -1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
7x+5=19
-1क -5 फावटी गुणचें.
7x=14
समिकरणाच्या दोनूय कुशींतल्यान 5 वजा करचें.
x=2
दोनुय कुशींक 7 न भाग लावचो.
x=2,y=-1
प्रणाली आतां सुटावी जाली.