मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+y=50,5x+7y=300
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+y=50
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-y+50
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
5\left(-y+50\right)+7y=300
5x+7y=300 ह्या दुस-या समिकरणांत x खातीर -y+50 बदलपी घेवचो.
-5y+250+7y=300
-y+50क 5 फावटी गुणचें.
2y+250=300
7y कडेन -5y ची बेरीज करची.
2y=50
समिकरणाच्या दोनूय कुशींतल्यान 250 वजा करचें.
y=25
दोनुय कुशींक 2 न भाग लावचो.
x=-25+50
x=-y+50 त y खातीर 25 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=25
-25 कडेन 50 ची बेरीज करची.
x=25,y=25
प्रणाली आतां सुटावी जाली.
x+y=50,5x+7y=300
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&1\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\300\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}1&1\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
\left(\begin{matrix}1&1\\5&7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-5}&-\frac{1}{7-5}\\-\frac{5}{7-5}&\frac{1}{7-5}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{2}\\-\frac{5}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 50-\frac{1}{2}\times 300\\-\frac{5}{2}\times 50+\frac{1}{2}\times 300\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\25\end{matrix}\right)
अंकगणीत करचें.
x=25,y=25
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+y=50,5x+7y=300
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
5x+5y=5\times 50,5x+7y=300
x आनी 5x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
5x+5y=250,5x+7y=300
सोंपें करचें.
5x-5x+5y-7y=250-300
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 5x+5y=250 तल्यान 5x+7y=300 वजा करचो.
5y-7y=250-300
-5x कडेन 5x ची बेरीज करची. अटी 5x आनी -5x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-2y=250-300
-7y कडेन 5y ची बेरीज करची.
-2y=-50
-300 कडेन 250 ची बेरीज करची.
y=25
दोनुय कुशींक -2 न भाग लावचो.
5x+7\times 25=300
5x+7y=300 त y खातीर 25 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
5x+175=300
25क 7 फावटी गुणचें.
5x=125
समिकरणाच्या दोनूय कुशींतल्यान 175 वजा करचें.
x=25
दोनुय कुशींक 5 न भाग लावचो.
x=25,y=25
प्रणाली आतां सुटावी जाली.