\left\{ \begin{array} { l } { x + y = 30 } \\ { 2 x + 25 y = 698 } \end{array} \right.
x, y खातीर सोडोवचें
x = \frac{52}{23} = 2\frac{6}{23} \approx 2.260869565
y = \frac{638}{23} = 27\frac{17}{23} \approx 27.739130435
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
x+y=30,2x+25y=698
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+y=30
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-y+30
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
2\left(-y+30\right)+25y=698
2x+25y=698 ह्या दुस-या समिकरणांत x खातीर -y+30 बदलपी घेवचो.
-2y+60+25y=698
-y+30क 2 फावटी गुणचें.
23y+60=698
25y कडेन -2y ची बेरीज करची.
23y=638
समिकरणाच्या दोनूय कुशींतल्यान 60 वजा करचें.
y=\frac{638}{23}
दोनुय कुशींक 23 न भाग लावचो.
x=-\frac{638}{23}+30
x=-y+30 त y खातीर \frac{638}{23} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{52}{23}
-\frac{638}{23} कडेन 30 ची बेरीज करची.
x=\frac{52}{23},y=\frac{638}{23}
प्रणाली आतां सुटावी जाली.
x+y=30,2x+25y=698
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\698\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
\left(\begin{matrix}1&1\\2&25\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-2}&-\frac{1}{25-2}\\-\frac{2}{25-2}&\frac{1}{25-2}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}&-\frac{1}{23}\\-\frac{2}{23}&\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}\times 30-\frac{1}{23}\times 698\\-\frac{2}{23}\times 30+\frac{1}{23}\times 698\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{52}{23}\\\frac{638}{23}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{52}{23},y=\frac{638}{23}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+y=30,2x+25y=698
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2x+2y=2\times 30,2x+25y=698
x आनी 2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
2x+2y=60,2x+25y=698
सोंपें करचें.
2x-2x+2y-25y=60-698
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2x+2y=60 तल्यान 2x+25y=698 वजा करचो.
2y-25y=60-698
-2x कडेन 2x ची बेरीज करची. अटी 2x आनी -2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-23y=60-698
-25y कडेन 2y ची बेरीज करची.
-23y=-638
-698 कडेन 60 ची बेरीज करची.
y=\frac{638}{23}
दोनुय कुशींक -23 न भाग लावचो.
2x+25\times \frac{638}{23}=698
2x+25y=698 त y खातीर \frac{638}{23} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x+\frac{15950}{23}=698
\frac{638}{23}क 25 फावटी गुणचें.
2x=\frac{104}{23}
समिकरणाच्या दोनूय कुशींतल्यान \frac{15950}{23} वजा करचें.
x=\frac{52}{23}
दोनुय कुशींक 2 न भाग लावचो.
x=\frac{52}{23},y=\frac{638}{23}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}