मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+y=-1,4x-2y=-16
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+y=-1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-y-1
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
4\left(-y-1\right)-2y=-16
4x-2y=-16 ह्या दुस-या समिकरणांत x खातीर -y-1 बदलपी घेवचो.
-4y-4-2y=-16
-y-1क 4 फावटी गुणचें.
-6y-4=-16
-2y कडेन -4y ची बेरीज करची.
-6y=-12
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
y=2
दोनुय कुशींक -6 न भाग लावचो.
x=-2-1
x=-y-1 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-3
-2 कडेन -1 ची बेरीज करची.
x=-3,y=2
प्रणाली आतां सुटावी जाली.
x+y=-1,4x-2y=-16
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&1\\4&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-16\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}1&1\\4&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}-1\\-16\end{matrix}\right)
\left(\begin{matrix}1&1\\4&-2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}-1\\-16\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-2\end{matrix}\right))\left(\begin{matrix}-1\\-16\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-4}&-\frac{1}{-2-4}\\-\frac{4}{-2-4}&\frac{1}{-2-4}\end{matrix}\right)\left(\begin{matrix}-1\\-16\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-1\\-16\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{6}\left(-16\right)\\\frac{2}{3}\left(-1\right)-\frac{1}{6}\left(-16\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
अंकगणीत करचें.
x=-3,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+y=-1,4x-2y=-16
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4x+4y=4\left(-1\right),4x-2y=-16
x आनी 4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
4x+4y=-4,4x-2y=-16
सोंपें करचें.
4x-4x+4y+2y=-4+16
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 4x+4y=-4 तल्यान 4x-2y=-16 वजा करचो.
4y+2y=-4+16
-4x कडेन 4x ची बेरीज करची. अटी 4x आनी -4x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
6y=-4+16
2y कडेन 4y ची बेरीज करची.
6y=12
16 कडेन -4 ची बेरीज करची.
y=2
दोनुय कुशींक 6 न भाग लावचो.
4x-2\times 2=-16
4x-2y=-16 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
4x-4=-16
2क -2 फावटी गुणचें.
4x=-12
समिकरणाच्या दोनूय कुशींतल्यान 4 ची बेरीज करची.
x=-3
दोनुय कुशींक 4 न भाग लावचो.
x=-3,y=2
प्रणाली आतां सुटावी जाली.