मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+4y=7,2x-7y=-31
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+4y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-4y+7
समिकरणाच्या दोनूय कुशींतल्यान 4y वजा करचें.
2\left(-4y+7\right)-7y=-31
2x-7y=-31 ह्या दुस-या समिकरणांत x खातीर -4y+7 बदलपी घेवचो.
-8y+14-7y=-31
-4y+7क 2 फावटी गुणचें.
-15y+14=-31
-7y कडेन -8y ची बेरीज करची.
-15y=-45
समिकरणाच्या दोनूय कुशींतल्यान 14 वजा करचें.
y=3
दोनुय कुशींक -15 न भाग लावचो.
x=-4\times 3+7
x=-4y+7 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-12+7
3क -4 फावटी गुणचें.
x=-5
-12 कडेन 7 ची बेरीज करची.
x=-5,y=3
प्रणाली आतां सुटावी जाली.
x+4y=7,2x-7y=-31
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-31\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-4\times 2}&-\frac{4}{-7-4\times 2}\\-\frac{2}{-7-4\times 2}&\frac{1}{-7-4\times 2}\end{matrix}\right)\left(\begin{matrix}7\\-31\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}&\frac{4}{15}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}7\\-31\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}\times 7+\frac{4}{15}\left(-31\right)\\\frac{2}{15}\times 7-\frac{1}{15}\left(-31\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\3\end{matrix}\right)
अंकगणीत करचें.
x=-5,y=3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+4y=7,2x-7y=-31
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2x+2\times 4y=2\times 7,2x-7y=-31
x आनी 2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
2x+8y=14,2x-7y=-31
सोंपें करचें.
2x-2x+8y+7y=14+31
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2x+8y=14 तल्यान 2x-7y=-31 वजा करचो.
8y+7y=14+31
-2x कडेन 2x ची बेरीज करची. अटी 2x आनी -2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
15y=14+31
7y कडेन 8y ची बेरीज करची.
15y=45
31 कडेन 14 ची बेरीज करची.
y=3
दोनुय कुशींक 15 न भाग लावचो.
2x-7\times 3=-31
2x-7y=-31 त y खातीर 3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x-21=-31
3क -7 फावटी गुणचें.
2x=-10
समिकरणाच्या दोनूय कुशींतल्यान 21 ची बेरीज करची.
x=-5
दोनुय कुशींक 2 न भाग लावचो.
x=-5,y=3
प्रणाली आतां सुटावी जाली.