मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+4y=-1,2x-4y=4
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+4y=-1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-4y-1
समिकरणाच्या दोनूय कुशींतल्यान 4y वजा करचें.
2\left(-4y-1\right)-4y=4
2x-4y=4 ह्या दुस-या समिकरणांत x खातीर -4y-1 बदलपी घेवचो.
-8y-2-4y=4
-4y-1क 2 फावटी गुणचें.
-12y-2=4
-4y कडेन -8y ची बेरीज करची.
-12y=6
समिकरणाच्या दोनूय कुशींतल्यान 2 ची बेरीज करची.
y=-\frac{1}{2}
दोनुय कुशींक -12 न भाग लावचो.
x=-4\left(-\frac{1}{2}\right)-1
x=-4y-1 त y खातीर -\frac{1}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=2-1
-\frac{1}{2}क -4 फावटी गुणचें.
x=1
2 कडेन -1 ची बेरीज करची.
x=1,y=-\frac{1}{2}
प्रणाली आतां सुटावी जाली.
x+4y=-1,2x-4y=4
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-4\times 2}&-\frac{4}{-4-4\times 2}\\-\frac{2}{-4-4\times 2}&\frac{1}{-4-4\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{6}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{3}\times 4\\\frac{1}{6}\left(-1\right)-\frac{1}{12}\times 4\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{2}\end{matrix}\right)
अंकगणीत करचें.
x=1,y=-\frac{1}{2}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+4y=-1,2x-4y=4
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2x+2\times 4y=2\left(-1\right),2x-4y=4
x आनी 2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
2x+8y=-2,2x-4y=4
सोंपें करचें.
2x-2x+8y+4y=-2-4
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 2x+8y=-2 तल्यान 2x-4y=4 वजा करचो.
8y+4y=-2-4
-2x कडेन 2x ची बेरीज करची. अटी 2x आनी -2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
12y=-2-4
4y कडेन 8y ची बेरीज करची.
12y=-6
-4 कडेन -2 ची बेरीज करची.
y=-\frac{1}{2}
दोनुय कुशींक 12 न भाग लावचो.
2x-4\left(-\frac{1}{2}\right)=4
2x-4y=4 त y खातीर -\frac{1}{2} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x+2=4
-\frac{1}{2}क -4 फावटी गुणचें.
2x=2
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
x=1
दोनुय कुशींक 2 न भाग लावचो.
x=1,y=-\frac{1}{2}
प्रणाली आतां सुटावी जाली.