मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+3y=1,2x+3y=1
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+3y=1
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-3y+1
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
2\left(-3y+1\right)+3y=1
2x+3y=1 ह्या दुस-या समिकरणांत x खातीर -3y+1 बदलपी घेवचो.
-6y+2+3y=1
-3y+1क 2 फावटी गुणचें.
-3y+2=1
3y कडेन -6y ची बेरीज करची.
-3y=-1
समिकरणाच्या दोनूय कुशींतल्यान 2 वजा करचें.
y=\frac{1}{3}
दोनुय कुशींक -3 न भाग लावचो.
x=-3\times \frac{1}{3}+1
x=-3y+1 त y खातीर \frac{1}{3} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-1+1
\frac{1}{3}क -3 फावटी गुणचें.
x=0
-1 कडेन 1 ची बेरीज करची.
x=0,y=\frac{1}{3}
प्रणाली आतां सुटावी जाली.
x+3y=1,2x+3y=1
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}1&3\\2&3\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-3\times 2}&-\frac{3}{3-3\times 2}\\-\frac{2}{3-3\times 2}&\frac{1}{3-3\times 2}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+1\\\frac{2-1}{3}\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{1}{3}\end{matrix}\right)
अंकगणीत करचें.
x=0,y=\frac{1}{3}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+3y=1,2x+3y=1
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
x-2x+3y-3y=1-1
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून x+3y=1 तल्यान 2x+3y=1 वजा करचो.
x-2x=1-1
-3y कडेन 3y ची बेरीज करची. अटी 3y आनी -3y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-x=1-1
-2x कडेन x ची बेरीज करची.
-x=0
-1 कडेन 1 ची बेरीज करची.
x=0
दोनुय कुशींक -1 न भाग लावचो.
3y=1
2x+3y=1 त x खातीर 0 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=\frac{1}{3}
दोनुय कुशींक 3 न भाग लावचो.
x=0,y=\frac{1}{3}
प्रणाली आतां सुटावी जाली.